On the Longtime Stability of a Copper Rolling Texture Analysed by Neutron Diffraction Pole Figures

1998 ◽  
Vol 278-281 ◽  
pp. 502-507
Author(s):  
E. Jansen ◽  
Wolfgang Schäfer ◽  
A. Kirfel ◽  
J. Palacios
Texture ◽  
1974 ◽  
Vol 1 (4) ◽  
pp. 211-231 ◽  
Author(s):  
J. Tobisch ◽  
A. Mücklichf

The three-dimensional orientation distribution was calculated from neutron diffraction pole figures for a copper 27.2% zinc alloy cold rolled to different degrees of deformation. The results agree qualitatively with those of other authors. There are however differences in the quantitative respect which influence the conclusions to be drawn. For rolling degrees lower than about 70% the texture exhibits an orientation tube similar to that of the copper type, but with a significantly different distribution along the tube axis. For rolling degrees larger than 70% the texture can be described by the orientation {110}〈112〉. The deformation is assumed to occur according to the Wassermann model and the Hu model respectively in these two ranges.


1971 ◽  
Vol 4 (4) ◽  
pp. 303-310 ◽  
Author(s):  
H. J. Bunge ◽  
J. Tobisch ◽  
W. Sonntag

Three-dimensional orientation distribution functions of the crystallites in copper sheets, cold rolled to different degrees of reduction, have been determined using neutron diffraction pole figures. The main features of the textures may be represented by the orientation `tube' already described in prior publications. Two ranges of rolling reduction can be distinguished, a lower one (30 to 50%) and a higher one (70 to 95%) the texture changes of which correspond to those calculated after the Taylor theory. In an intermediate range (50 to 70%) a different deformation mechanism occurs which leads to an intermediate (001) [110] texture component. It is supposed that anisotropic hardening may have occurred in this range.


2005 ◽  
Vol 105 ◽  
pp. 83-88 ◽  
Author(s):  
H. Sitepu ◽  
Heinz Günter Brokmeier

The modelling and/or describing of texture (i.e. preferred crystallographic orientation (PO)) is of critical importance in powder diffraction analysis - for structural study and phase composition. In the present study, the GSAS Rietveld refinement with generalized spherical harmonic (GSH) was used for describing isostatically-pressed molybdite powders neutron powder diffraction data collected in the ILL D1A instrument. The results showed that for texture in a single ND data of molybdite the reasonable crystal structure parameters may be obtained when applying corrections to intensities using the GSH description. Furthermore, the WIMV method was used to extract the texture description directly from a simultaneous refinement with 1368 whole neutron diffraction patterns taken from the sample held in a variety of orientations in the ILL D1B texture goniometer. The results provided a quantitative description of the texture refined simultaneously with the crystal structure. Finally, the (002) molybdite pole-figures were measured using the GKSS TEX2 texture goniometer. The results showed that neutron diffraction is an excellent tool to investigate the texture in molybdite.


1992 ◽  
Vol 19 (1-2) ◽  
pp. 9-27 ◽  
Author(s):  
D. I. Nikolayev ◽  
T. I. Savyolova ◽  
K. Feldmann

The orientation distribution function (ODF) obtained by classical spherical harmonics analysis may be falsified by ghost influences as well as series truncation effects. The ghosts are a consequence of the inversion symmetry of experimental pole figures which leads to the loss of information on the “odd” part of ODF.In the present paper a new method for ODF reproduction is proposed. It is based on the superposition of Gaussian distributions satisfying the central limit theorem in the SO(3)-space as well as the ODF positivity condition. The kind of ODF determination offered here is restricted to the fit of Gaussian parameters and weights with respect to the experimental pole figures. The operating mode of the new method is demonstrated for a rolling texture of copper. The results are compared with the corresponding ones obtained by the series expansion method.


1999 ◽  
Vol 31 (4) ◽  
pp. 239-248 ◽  
Author(s):  
H. Ghildiyal ◽  
E. Jansen ◽  
A. Kirfel

The volume texture of a naturally deformed quartzite from the Kaoko belt, North-West Namibia, has been analysed by both universal stage microscopy and neutron diffraction. Universal stage microscopy is restricted to the determination of the base pinacoid preferred orientation in quartzite. For a more complete description of the texture, the orientations of additional crystal planes, such as first and second order prisms as well as positive and negative rhombs, must be known. Neutron methods allow the evaluation of pole figures of all Bragg reflecting planes, of which those of the first order prisms being considered to be the most active slip planes, are of particular interest. Drawbacks of neutron diffraction, i.e. the faking of an eventually absent inversion centre and lack of resolution, can be overcome by pole figure inversion and subsequent calculation of desired pole figures. Both, universal stage microscopy and neutron diffraction yield well comparable results, of course only with respect to the pole figure of the c-axis.


1993 ◽  
Vol 21 (2-3) ◽  
pp. 71-78
Author(s):  
H.-G. Brokmeier

This paper describes the application of neutron diffraction to investigate the texture of a zinc layer 8 μm in thickness. In a nondestructive way both the texture of the zinc layer as well as the texture of the steel substrate were studied. Therefore, pole figures of iron ((110), (200) and (211)) and of zinc ((0002), (101¯0), (101¯1); and (101¯3)/(112¯0)) were measured; additionally the orientation distribution function of iron and zinc were calculated.


2004 ◽  
Vol 443-444 ◽  
pp. 267-270 ◽  
Author(s):  
H. Sitepu ◽  
Heinz Günter Brokmeier

The orientation distribution function (ODF) of the textured polycrystalline nickel titanium (NiTi) shape memory alloys (SMAs) was determined from the measured austenitic (B2)pole-figures by neutron diffraction. The texture results showed that neutron diffraction is an excellent tool to investigate the minor variation in the texture of NiTi alloys, which is very sensitive to the variation of the content of nickel in the materials. Moreover, the alloys crystallographic phase fraction and texture were calculated from Rietveld refinement with generalized spherical harmonic (GSH) description for the measured complete neutron powder diffraction (ND) spectrum, rather than a few isolated peaks, during in-situ temperature-induced martensitic transformation. The phase fraction results are consistent with the differential scanning calorimeter (DSC) curves.


1981 ◽  
Vol 4 (3) ◽  
pp. 153-157 ◽  
Author(s):  
L. C. Tai ◽  
Zen-Jue Tan

The nickel-iron-niobium alloy containing about 79% Ni, 8% Nb and 13% Fe in sheet form has been prepared and fabricated. The rolling texture of the alloy after cold reduction of 50 and 94% has been determined by using X-ray counter diffractometer and the results are presented in pole figures. In comparison with Ni-Fe-Mo, the results are discussed from a view of the difference of mechanical hardness between these two categories of alloys.


2017 ◽  
Vol 905 ◽  
pp. 74-80
Author(s):  
David Gloaguen ◽  
Baptiste Girault ◽  
Jamal Fajoui ◽  
Vincent Klosek ◽  
Marie José Moya

A theoretical and experimental study was carry out to investigate deformation mechanisms in a textured titanium alloy. In situ neutron diffraction measurements were performed to analyze different {hk.l} family planes ({10.0}, {10.1}, {11.0} and {00.2}) and determine the corresponding internal strain pole figures. This method was applied to a pure titanium (a-Ti) submitted to a uniaxial tensile load up to 2 %. The experimental data was then used to validate the EPSC model in order to predict the distribution of lattice strains determined by neutron diffraction for various diffraction vector directions. This comparison reveals that the model results were in good agreement with the experimental data and the simulations reproduced the lattice strain development observed on the strain pole figures determined by neutron diffraction.


2005 ◽  
Vol 105 ◽  
pp. 175-180 ◽  
Author(s):  
Stanislav Vratislav ◽  
Maja Dlouhá ◽  
Ladislav Kalvoda

Our laboratory developed and tested experimental and calculation techniques for quantitative texture analysis based on the ODF combined with the diffraction of thermal neutrons. In our work the texture of the Fe-3%Si sheets was investigated after different stages of their processing, i.e. hot-rolled strips, first cold rolling, first inter-annealing, second cold rolling, second annealing and secondary recrystallisation. The texture experiments were carried out on the KSN-2 diffractometer which is equipped with the TG-1 texture goniometer with automatic data collection for transmission and reflection geometry. TODFND (the cubic symmetry of the crystals and orthorhombic symmetry of the specimen) was used and the ODF values were obtained together with all texture characteristics (pole figures, inverse pole figures, ODF - f (g) values, fibre texture with <110> and <001> axis parallel to rolling direction, parameters of the ideal orientations (HKL)<uvw>, texture index J, volume fraction coefficient f. The comparison of the texture parameters of the six samples with the different technologic history is given and the magnetic anisotropy of all measured samples was determined by means of the quantitative texture analysis (ODF-the matrix Cl nµ) for all samples. Results achieved in our study confirm that the quantitative texture analysis in connection with neutron diffraction can help to improve the technology of the preparation of oriented magnetic steel sheets.


Sign in / Sign up

Export Citation Format

Share Document