Wear Behavior of an Austempered Ductile Iron Containing Mo-Ni-Cu

2005 ◽  
Vol 475-479 ◽  
pp. 199-202 ◽  
Author(s):  
Sasan Yazdani ◽  
M.A. Rahimi

The aim of the this investigation is to study the influence of Ni on tribiological behavior of an austempered ductile iron (ADI) containing Mo, Ni and Cu. Ductile irons with chemical composition Fe-3.56%C– 2.67%Si –0.25%Mo–0.5%Cu and Ni contents of 0.8 and 1.5% were cast into standard Y-blocks. Wear test samples were machined off from the bottom section of blocks. Austenitizing heat treatment was carried out at 870°C temperature followed by austempering at 270, 320, and 370°C for 5-1140 minutes. The wear test was carried out by using block-on-ring test machine. Sliding dry wear behavior was studied under applied loads of 50, 100 and 150N. The results show that wear resistance is independent of austempering temperature with an applied load of 50N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150N. Wear mechanism is described as being due to subsurface fatigue, with cracks nucleated at plastically, deformed graphite interfaces. The wear controlling mechanism is the crack growth when wear shows a dependence on applied load and austempering temperature.

Author(s):  
T. R. Uma ◽  
J. B. Simha ◽  
K. Narasimha Murthy

Laboratory abrasive wear tests have been reported on permanent moulded toughened austempered ductile iron. The influence of austempering temperature on the abrasive wear behavior have been studied and discussed. The results indicate that with increase in austempering temperature from 300°C to 350°C, the abrasive wear resistance increased, and as the austempering temperature increased to 400°C, there was reduction in the abrasive wear resistance. These results have been interpreted based on the structural features and graphite morphology.


2014 ◽  
Vol 54 (12) ◽  
pp. 2860-2867 ◽  
Author(s):  
Diego Alejandro Colombo ◽  
María Dolores Echeverría ◽  
Sebastián Laino ◽  
Ricardo Cesar Dommarco ◽  
Juan Miguel Massone

2019 ◽  
Vol 35 (11) ◽  
pp. 1329-1336 ◽  
Author(s):  
Chengduo Wang ◽  
Ruizhuo Liu ◽  
Songjie Li ◽  
Chang Gu ◽  
Xueshan Du ◽  
...  

2014 ◽  
Vol 488-489 ◽  
pp. 3-8 ◽  
Author(s):  
Gao Lian Shi ◽  
Shao Hua Wu ◽  
Xu Hong Guo ◽  
Xing Huang

With the common engineering-purpose ductile iron used as research subject, the research on rules of austempering parameters to influence the impact toughness and hardness of austempered ductile iron (ADI) was implemented in this paper by adopting the combination of theoretical, experimental and numerical simulation methods, and setting series of austempering parameters; After the impact tests and hardness tests simulated by the finite element software - ANSYS Workbench, the simulation data were analyzed by comparing with the experimental data. The experimental results showed that: austenitizing time was longer, ADI hardness was smaller while impact toughness remained unchanged; hardness was in linearly-decreasing trend with rise of austempering temperature, while impact toughness first increased and then decreased as the austempering temperature rose, with the maximum at the temperature 350°C; The effect of austempering time on the impact toughness was very few; extension of austempering time allows the hardness to increase slightly, but only a little.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


2011 ◽  
Vol 284-286 ◽  
pp. 1085-1088 ◽  
Author(s):  
Jin Hai Liu ◽  
Guo Lu Li ◽  
Xue Bo Zhao ◽  
Xiao Yan Hao ◽  
Jian Jun Zhang

The microstructure and properties of austempered ductile iron with carbides was studied to increase the abrasive resistance of ADI. It was proven that the austempering temperature influences greatly the microstructure, impact toughness, hardness and abrasion resistance of CADI. With increase of austempering temperature, the acicular ferrite becomes thicker and bigger, the impact toughness rises, and the hardness decreases. But there is a complicated effect of austempering temperature on wet abrasion resistance. In addition, the CADI grinding balls were cast and the field testing was performed. The CADI ball is one third of abrasion loss of low chromium cast iron, zero rate of breakage and no loosing round.


Sign in / Sign up

Export Citation Format

Share Document