Abrasive Wear Behavior of Permanent Moulded Toughened Austempered Ductile Iron

Author(s):  
T. R. Uma ◽  
J. B. Simha ◽  
K. Narasimha Murthy

Laboratory abrasive wear tests have been reported on permanent moulded toughened austempered ductile iron. The influence of austempering temperature on the abrasive wear behavior have been studied and discussed. The results indicate that with increase in austempering temperature from 300°C to 350°C, the abrasive wear resistance increased, and as the austempering temperature increased to 400°C, there was reduction in the abrasive wear resistance. These results have been interpreted based on the structural features and graphite morphology.

Wear ◽  
2019 ◽  
Vol 440-441 ◽  
pp. 203065 ◽  
Author(s):  
Amanda Souza Oliveira Pimentel ◽  
Wilson Luiz Guesser ◽  
William José Rodrigues Custódio da Silva ◽  
Pedro Dolabella Portella ◽  
Mathias Woydt ◽  
...  

2019 ◽  
Vol 36 (1−2) ◽  
Author(s):  
Oskari Haiko ◽  
Vuokko Heino ◽  
David A Porter ◽  
Juha Uusitalo ◽  
Jukka Kömi

Hardness has been considered the main factor controlling the abrasive wear of steels. However, microstructure also affects the wear behavior. Four steels with different microstructures were produced with a Gleeble 3800 thermomechanical simulator and tested for abrasive wear behavior. Different cooling rates and heat treatments were applied to obtain a surface hardness of approximately 450 HV. Mainly tempered martensite, pearlite and some bainite could be observed in the microstructures. Scratch testing with a CETR UMT-2 tribometer was conducted to produce wear tracks. The results revealed that each steel showed distinct wear behavior.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1321 ◽  
Author(s):  
Arnoldo Bedolla-Jacuinde ◽  
Francisco Guerra ◽  
Ignacio Mejia ◽  
Uzzi Vera

From the present study, niobium additions of 1.79% and 3.98% were added to a 15% Cr–3% C white iron, and their effects on the microstructure, hardness and abrasive wear were analyzed. The experimental irons were melted in an open induction furnace and cast into sand molds to obtain bars of 45 mm diameter. The alloys were characterized by optical and electron microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900 °C for 30 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under three loads (58, 75 and 93 N). The results show that niobium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming niobium carbides at the beginning of the solidification process; thus decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 24% for the iron with 3.98% Nb. However, the overall carbide content was constant at 30%; bulk hardness changed from 48 to 55 hardness Rockwell C (HRC) and the wear resistance was found to have an interesting behavior. At the lowest load, wear resistance for the base iron was 50% lower than that for the 3.98% Nb iron, which is attributed to the presence of hard NbC. However, at the highest load, the wear behavior was quite similar for all the irons, and it was attributed to a severe carbide cracking phenomenon, particularly in the as-cast alloys. After the destabilization heat treatment, the wear resistance was higher for the 3.98% Nb iron at any load; however, at the highest load, not much difference in wear resistance was observed. Such a behavior is discussed in terms of the carbide volume fraction (CVF), the amount of niobium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Wear ◽  
2005 ◽  
Vol 258 (1-4) ◽  
pp. 189-193 ◽  
Author(s):  
Ozgur Celik ◽  
Hayrettin Ahlatci ◽  
E. Sabri Kayali ◽  
Huseyin Cimenoglu

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 767 ◽  
Author(s):  
Fulin Wen ◽  
Jianhua Zhao ◽  
Dengzhi Zheng ◽  
Ke He ◽  
Wei Ye ◽  
...  

The austempered ductile iron was austenitized at 900 °C for 1 h and quenched in an isothermal quenching furnace at 380 °C and 280 °C, respectively. This paper aims to investigate the effects of bainite on wear resistance of austempered ductile iron (ADI) at different loads conditions. The micro-structure and phase composition of ADI was characterized and analyzed by metallographic microscope (OM), X-ray diffractometer (XRD) and scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The results showed that the volume fraction of retained austenite in ADI is reduced with the increase of austenitizing temperature. Meanwhile, the two kinds of ADI samples showed varied wear resistance when they were worn at different loads conditions. For wearing at a load of 25 N, the wear resistance of ADI mainly depends on matrix micro-hardness. Thus, ADI with lower bainite structure has higher hardness and leads to better wear resistance. When wearing at a load of 100 N, the increase of micro-hardness of upper bainite was significant. As a consequence, upper bainite showed superior friction and wear behavior. It was also found that the form of wear behavior of ADI changed from abrasive wear to fatigue delamination as the wear load increased from 25 N to 100 N according to the observation on worn surface.


Author(s):  
Ramendra Kumar Gupta ◽  
Nitesh Vashishtha ◽  
S.G. Sapate ◽  
V. Udhayabanu ◽  
D R Peshwe

Abstract In the present study, the abrasive wear behavior of Al-4.4 wt.% Cu composite reinforced with 2 vol.% graphite particle (Grp) has been investigated. In the preparation of composite, Ultrasonic Treatment (UT) is provided in the composite melt for the uniform distribution of reinforcement particles. Two bond abrasive wear tests are conducted for composites treated with ultrasound and without UT and base alloy. The results of abrasive wear studies indicate that at 5 and 10 Newton (N) loads, the composite with UT has a higher coefficient of friction (COF) and wear resistance than that of the base alloy (Al-4.4 wt.% Cu). Whereas, at 15 and 20 N load, the value of COF and wear resistance is lower for the composite. Two abrasive wear mechanisms micro-plowing and micro-cutting have been observed during the wear tests of base alloy and composites. The analysis of worn-out sample surfaces at higher load reveals that softened material layer due to localized elevation in temperature between two contact surfaces during wearing acts as a tribolayer in base alloy while in composites both softened material layer and graphite layer have worked together as tribolayer.


2013 ◽  
Vol 364 ◽  
pp. 37-41 ◽  
Author(s):  
Ling Hui Song ◽  
Shou Ren Wang ◽  
Ying Zi Wang ◽  
Pei Long Song ◽  
Guang Ji Xue

This article discussed the compound impact-abrasive wear behavior of shots impeller pair in shot blast cleaning. The shots impeller pairs were fabricated by investment casting processing. The predominance and shortcoming of investment casting for high chromium wear resistance materials used in shot blasting machine were also analyzed. Using investment casting technology, the high-Cr iron casting would be improvement in interal and explicit quality. And, owing to different included angles of shots, the blade show different wear behavior. The ideal included angle of shots is 12o. Increase in the angles leads to decreases of the wear resistance.


Sign in / Sign up

Export Citation Format

Share Document