On Control of Six Freedom Magnetostrictive Smart Structure

2005 ◽  
Vol 475-479 ◽  
pp. 2111-2114 ◽  
Author(s):  
Jian Qin Mao ◽  
Chao Li ◽  
Hui Bin Xu ◽  
Cheng Bao Jiang ◽  
Lin Li

A six degree-of-freedom (DOF) Stewart platform is constructed, which consists of six TbDyFe alloy magnetostrictive actuators, and applied to active vibration control. To control the smart structure, a real time computer control system is built. An improved adaptive filtering algorithm is proposed in this paper, which is used for the computer control system. The results of experiments show that the smart structure and the proposed algorithm are efficient for active vibration control. More than 30 dB of vibration attenuation is achieved in real-time experiments.

2007 ◽  
Vol 546-549 ◽  
pp. 2199-2204 ◽  
Author(s):  
Chao Li ◽  
Jian Qin Mao

Multiple degree-of-freedom (DOF) vibration isolation is essential for precision control of space-borne structures and weapon systems. A new design and analysis of actuators employing magnetostrictive material TbDyFe is presented. Then, this paper studies the design and control problems of a six DOF Stewart platform using the concept of cubic configuration. Optimal geometry for the sensor configuration to get best signal is designed. To control the smart structure, a real time computer control system is built. Improved robust adaptive filtering algorithm based on nonlinear constitutive relation proposed in this paper and used in the computer control system. More than 20 dB of vibration attenuation is achieved in real-time experiments.


1998 ◽  
Author(s):  
Takafumi Fujita ◽  
Hajime Nonaka ◽  
Chuen Shinn Yang ◽  
Hirofumi Kondo ◽  
Yasushi Mori ◽  
...  

2010 ◽  
Vol 139-141 ◽  
pp. 2336-2339
Author(s):  
Lei Zhang ◽  
Dong Wei Li ◽  
Zhi Jun Mao

A kind of adaptive searching optimization active vibration control system of smart structure with piezoelectric materials was put forward, and the smart flexible cantilever structure was analyzed, the active vibration control system was realized in the lab. The result proved the methods’ feasibility and practicability.


2005 ◽  
Vol 475-479 ◽  
pp. 2089-2094
Author(s):  
Hui Bin Xu ◽  
Tian Li Zhang ◽  
Cheng Bao Jiang ◽  
Hu Zhang

TbDyFe is a rare earth-iron magnetostrictive alloy with “giant” magnetostrain, good magnetomechanical coupling factor and fast response. Giant magnetostrictive actuators (GMAs) are designed and fabricated with home-made TbDyFe rods. Their magnetostrain properties under varied operation are tested. The static output displacement up to 100μm and output force up to 1500N were obtained. The dynamic displacement increases with amplitude under fixed frequency and decreases with frequency under fixed amplitude generally. The maximum dynamic output displacement of 146µm was obtained at natural frequency around 5Hz. Active vibration control employing GMA was implemented in the flexible structure. The excellent damping effect, 20-30 dB under the frequency range from 10Hz to 100Hz was obtained. The dynamic phase delay of GMA has been analyzed. A novel improved FSLMS algorithm is proposed to achieve a better control performance.


2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


Sign in / Sign up

Export Citation Format

Share Document