Effects of Rolling Condition on Warm Deep Drawability of Magnesium Alloy Sheets Produced by Twin-Roll Strip Casting

2005 ◽  
Vol 475-479 ◽  
pp. 489-492 ◽  
Author(s):  
Hisaki Watari ◽  
Keith Davey ◽  
M.T. Alonso Rasgado ◽  
L.D. Clark ◽  
Ryoji Nakamura ◽  
...  

Effects of rolling conditions on warm deep drawability of cast magnesium alloy that were hot rolled after roll strip casting were investigated to ascertain the feasibility of twin-roll strip casting process of AZ31B magnesium alloy. Hot rolling and heat treatment conditions were changed to examine which conditions were appropriate for producing AZ31B wrought magnesium alloys after strip casting process. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled.

2004 ◽  
Vol 449-452 ◽  
pp. 181-184 ◽  
Author(s):  
Hisaki Watari ◽  
Nobuhio Koga ◽  
R. Paisarn ◽  
Ryoji Nakamura

An experimental investigation was performed into the formability of magnesium alloy sheets that were hot-rolled after a semi-solid roll strip casting process. Semi-solid forming helps reduce the total product weight if the semi-solid material produced by light metals, such as aluminum and magnesium can be used to replace conventional iron and steel products. However, the problems of utilizing magnesium alloys are still related to high manufacturing costs. This means that improved quality must be balanced by economic validity. Magnesium alloy AZ31B was used in this experiment to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling conditions and heat treatment were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the finished products was performed. It has been found that a limiting drawing ratio of 2.4 was possible in a deep drawing process of the cast magnesium alloy sheets.


2007 ◽  
Vol 345-346 ◽  
pp. 165-168 ◽  
Author(s):  
Hisaki Watari ◽  
Ryoji Nakamura ◽  
R. Paisern ◽  
Nobuhio Koga ◽  
Keith Davey

This paper is concerned with a manufacturing process and technology to facilitate the economical manufacture of high-quality magnesium alloy sheets. Magnesium alloys AZ31, AZ61, AM60 and AZ91 were used to investigate the appropriate anufacturing conditions for use in twin-roll strip casting. Temperatures of the molten materials and roll speeds were varied to find the appropriate manufacturing conditions. The effects of manufacturing conditions on possible forming were clarified in terms of roll speeds and roll gaps between upper and lower rolls. In addition, microscopic observation of the microstructure of the finished casting was performed. It was clarified that a magnesium sheet of 2.5 to 4.5mm thickness could be produced at a speed of 20 m/min by a horizontal copper roll caster. It was also found that the cast magnesium sheet of AZ31, AZ61, AM60 and AZ91 manufactured by roll strip casting could be used for plastic forming if the appropriate magnesium sheets were produced after the roll casting process. By a warm deep drawing test, it also demonstrated that a limiting drawing ratio of 2.4 was possible in the case of AZ91 sheet that was difficult to be manufactured by conventional extrusion process or DC casting and hot-rolling process for magesium alloy sheets with high aluminium contents.


2004 ◽  
Vol 274-276 ◽  
pp. 379-384 ◽  
Author(s):  
Hisaki Watari ◽  
R. Paisarn ◽  
Nobuhio Koga ◽  
Ryoji Nakamura ◽  
Keith Davey ◽  
...  

2013 ◽  
Vol 81 (5-6) ◽  
pp. 529-548 ◽  
Author(s):  
H. Saleh ◽  
T. Weling ◽  
J. Seidel ◽  
M. Schmidtchen ◽  
R. Kawalla ◽  
...  

2013 ◽  
Vol 395-396 ◽  
pp. 297-301
Author(s):  
Hong Yu Song ◽  
Hui Hu Lu ◽  
Hai Tao Liu ◽  
Guo Dong Wang

An Fe-3wt% Si as-cast strip was produced by twin-roll strip casting process. The as-cast strip was hot rolled at 1150°C by one pass of 20% reduction and coiled at 550°C. The tensile test was carried out and the elongation was measured. The microstructure and texture of the coiled strip and the fracture surface morphology of the tensile samples were characterized. It is found that the microstructure of the as-cast strip was characterized by columnar ferrite grains with pronounced {001}<0vw> fiber texture and martensite. The microstructure of coiled strip consisted of ferrite grains and pearlite, and the texture was mainly characterized by {001}<0vw> fiber texture. The necking was absent during the tensile test and the elongation of coiled strip was as low as 12%. The fracture surfaces of the tensile samples mainly exhibited cleavage fracture mode with coarse cleavage facets and some ligaments.


2015 ◽  
Vol 833 ◽  
pp. 15-18 ◽  
Author(s):  
Zhi Pu Pei ◽  
Dong Ying Ju ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu

A quantitative understanding of the twin-roll casting process is required to get high quality as-cast magnesium alloy strips. In this paper, a thermal flow-solidification simulation was carried out to study the behavior of casting zone and its effects on defects generation deeply. Results show that a lower pouring temperature is not suitable for producing defect-free magnesium alloy strips. With increasing of the casting speed, the tendency of cracks formation will getting smaller because of the more uniform temperature distribution. A low pool level leads to a small metal-roll contact area, and a sharp temperature distribution will generates under this situation, which is not good for strips quality.


2011 ◽  
Vol 383-390 ◽  
pp. 3954-3959 ◽  
Author(s):  
Shinichi Nishida ◽  
Kazuki Fukudome ◽  
H. Furusawa ◽  
M. Motomura ◽  
H. Watari

Strip casting process is possible to shorten for producing strip. Strip is produced from molten metal continuously and directly by strip casting process. Melt drag process is one of the single roll strip casting process. Melt drag process is simpler than general twin roll strip casting process. One of defect of cast strip is surface conditions, for example surface roughness. Cast strip surface roughness is larger than hot rolled strip. Large strip surface roughness is negative effect for cold rolling after strip casting or hot rolling. The aim of this study is improvement of cast strip surface roughness by melt drag process. We suggested vertical melt drag process. And investigations were operated such us producing conditions of Al-Si alloy strip, surface roughness of cast strip and microstructures.


2005 ◽  
Vol 488-489 ◽  
pp. 397-400
Author(s):  
Hwa Chul Jung ◽  
Ye Sik Kim ◽  
Kwang Seon Shin

The demand for magnesium alloys has increased significantly during the past decade in the automotive and electronic industries where weight reduction becomes increasingly an important issue. At present, high-pressure die casting (HPDC) is a dominant process in production of magnesium alloy components. However, magnesium alloy components produced by HPDC suffer from porosity problem and this limits the enhancement of mechanical properties through subsequent heat treatments. The semi-solid processing (SSP) is an emerging new technology for near-net shape production of engineering components, in which the alloys are processed in the temperature range where the liquid and solid phases coexist. The SSP has various advantages over the conventional casting processes. It offers the castings with high integrity and less porosity and allows subsequent heat treatments for enhancement of mechanical properties. For these advantages, the SSP of magnesium alloys has received increasing attention in recent years. In the present study, the continuous casting process was developed for the production of magnesium billets for the subsequent SSP. The process utilizes an electromagnetic stirring system in order to obtain desired microstructure with an excellent degree of homogeneity in both microstructure and composition. Prototypes of an air conditioner cover and a telescope housing were produced using the SSP of the continuously cast magnesium alloy billets.


Sign in / Sign up

Export Citation Format

Share Document