Ionic Conductivity of Sodium Ion with NaCF3SO3 Salts in Electrolyte for Sodium Batteries

2005 ◽  
Vol 486-487 ◽  
pp. 638-641 ◽  
Author(s):  
Tae-Bum Kim ◽  
Cheol Wan Park ◽  
Ho Suk Ryu ◽  
Hyo Jun Ahn

To find out the proper sodium ion conducting electrolyte at room temperature, we investigated the ac impedance measurement of PVdF gel polymer electrolyte and liquid tetraglyme(TEGDME) with various concentrations of sodium trifluoromethane sulfonate(NaCF3SO3). The concentration of NaCF3SO3 did not severely affect the ionic conductivity. The sodium ionic conductivity using TEGDME with NaCF3SO3 was about 3.3×10-4 S㎝-1 which was lower than that of the PVdF gel polymer electrolyte, 5.0×10-4 S㎝-1. From the viewpoint of ionic conductivity, PVdF gel polymer electrolyte was proper electrolyte for sodium battery.

2020 ◽  
Vol 10 (18) ◽  
pp. 6323 ◽  
Author(s):  
Mariangela Bellusci ◽  
Elisabetta Simonetti ◽  
Massimo De Francesco ◽  
Giovanni Battista Appetecchi

Na+-conducting, binary electrolytic mixtures, based on 1-ethyl-3-methyl-imidazolium, trimethyl-butyl-ammonium, and N-alkyl-N-methyl-piperidinium ionic liquid (IL) families, were designed and investigated. The anions were selected among the per(fluoroalkylsulfonyl)imide families. Sodium bis(trifluoromethylsulfonyl)imide, NaTFSI, was selected as the salt. The NaTFSI-IL electrolytes, addressed to safer sodium battery systems, were studied and compared in terms of ionic conductivity and thermal stability as a function of the temperature, the nature of the anion and the cation aliphatic side chain length. Room temperature conductivities of interest for sodium batteries, i.e., largely overcoming 10−4 or 10−3 S cm−1, are displayed. Similar conduction values are exhibited by the EMI-based samples even below −10 °C, making these electrolyte mixtures potentially appealing also for low temperature applications. The NaTFSI-IL electrolytes, with the exception of the FSI-ones, are found to be thermally stable up to 275 °C, depending on the nature of the cation and/or anion, thus extending their applicability above 100 °C and remarkably increasing the reliability and safety of the final device, especially in the case of prolonged overheating.


2019 ◽  
Vol 241 ◽  
pp. 27-35 ◽  
Author(s):  
Duy Thanh Vo ◽  
Hoang Nguyen Do ◽  
Thien Trung Nguyen ◽  
Thi Tuyet Hanh Nguyen ◽  
Van Man Tran ◽  
...  

2015 ◽  
Vol 713-715 ◽  
pp. 2658-2662 ◽  
Author(s):  
Yan An Yuan

A kind of new plasticizer glycerol carbonate (GC) was synthesized. The poly (acrylonitrile-methyl methacrylate) (P(AN-MMA)) was prepared by bulk polymerization. During the polymerization, glycerol carbonate with 1M lithium perchlorate (LiClO4) was added to (P(AN-MMA)) to form the gel electrolyte. The effect of the plasticizer on the conductivity of the copolymer electrolyte was studied. The ionic conductivity was found to be 3.3 × 10-4 S·cm-1 at room temperature via AC impedance measurement.


2020 ◽  
Vol 12 (1) ◽  
pp. 50-59
Author(s):  
Shivani Gupta ◽  
Sarvesh Kumar Gupta ◽  
B. K. Pandey ◽  
A. K. Gupta

Secondary batteries based on ion conduction are among the most promising technology for next generation mobile and stationary storage system due to their unmatched volumetric energy density. However the multiple emerging challenges which include electrochemical stability, transport efficiency and safety issues of these secondary batteries have attracted worldwide attention. The perspective of this review is that rational design of polymeric separator which is an essential component in rechargeable batteries separating anode and cathode, and controlling number of mobile ions is crucial to overall battery performance, including lifetime, safety as well as energy and power density of battery. There is impressive progress in the exploration of separator materials. Among them, poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-co-HFP) have received great attention as polymer host due to some its splendid collective property such as its amorphous nature, high room temperature ionic conductivity, high dielectric constant and the possibility of controlling the porosity of the materials through binary and ternary polymer/solvent systems. This review focuses specifically on recent advances in P(VdF-co-HFP) based separator cum gel polymer electrolyte with detailed analysis of several embedded functional agent that are incorporated to improve ionic conductivity, mechanical robustness and thermal stability of rechargeable batteries.


2013 ◽  
Vol 594-595 ◽  
pp. 786-792 ◽  
Author(s):  
Khairul Bahiyah Md Isa ◽  
Lisani Othman ◽  
Nurul Husna Zainol ◽  
Siti Mariam Samin ◽  
Woon Gie Chong ◽  
...  

Sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host were prepared using the solution casting technique. Sodium trifluoromethane-sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as the solvent plasticizer. The GPE films were found to be stable up to temperature of 145 °C as shown by TGA analysis. The AC impedance study show that the optimum conductivity of 2.50 x 10-3 S cm-1 at room temperature is achieved for the film containing 20 wt.% of NaCF3SO3 salt. The temperature dependence of conductivity obeys VTF relation in the temperature range of 303 K to 373 K.


2006 ◽  
Vol 510-511 ◽  
pp. 50-53 ◽  
Author(s):  
Ho Suk Ryu ◽  
Jae Won Choi ◽  
Jou Hyeon Ahn ◽  
Gyu Bong Cho ◽  
Hyo Jun Ahn

The lithium ionic conductivity of Poly (acrylonitrile) (PAN) gel polymer electrolyte with PC/EC was found to be about 1.3 x 10-3S/cm at room temperature. The discharge curve of Li/ PAN (PC+EC)/S battery showed only one plateau region, which is different from that using PVdF(TEGDME) gel polymer electrolyte. Also, the first discharge capacity was 556mAh/g-sulfur in Li/S battery using PAN (PC+EC) gel electrolyte at room temperature.


2021 ◽  
Vol 317 ◽  
pp. 434-439
Author(s):  
Siti Aminah Mohd Noor ◽  
Chow Peng Wong ◽  
Mariah Zuliana Dzulkipli ◽  
Mohd Sukor Su'ait ◽  
Lee Tian Khoon ◽  
...  

This study reported the preparation and characterization of gel polymer electrolyte (GPE) using poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), lithium perchlorate (LiClO4) and 1-butyl-3-metilimmidazoliumhexafluorophosphate [PF6]. The GPE were prepared by solution casting technique. [Bmim] [PF6] ionic liquid is used as an additive for the purpose of increasing the ionic conductivity of GPE. Morphological analysis showed that the electrolyte gel polymer sample had a smooth and flat surface with the addition of [Bmim] [PF6] and no phase separation effect was observed. This shows the compatibility between PVdF-HFP and [Bmim] [PF6]. ATR-FTIR analysis showed that C-F bond related peaks experienced peak changes in terms of intensity and peak shifting. This proves the interaction of the imidazolium ion with the fluorine atom through the formation of coordinate bonds. Ionic conductivity analysis showed that PVdF-HFP-[Bmim][PF6] samples reached a maximum room temperature ionic conductivity value of 2.44 × 10-4 S cm-1 at 60 wt.% [Bmim] [PF6]. When 20 wt.% of LiClO4 added to the system, the ionic conductivity increased one magnitude order to 2.20 × 10-3 S cm-1.


Sign in / Sign up

Export Citation Format

Share Document