A Transmission Electron Microscopy Study of the Role of Sc+Zr Addition to a 6082-T8 Alloy Subjected to Equal Channel Angular Pressing

2006 ◽  
Vol 503-504 ◽  
pp. 841-846 ◽  
Author(s):  
Marcello Cabibbo ◽  
E. Evangelista ◽  
C. Scalabroni ◽  
Ennio Bonetti

The microstructural evolution with strain was investigated either in a Zr-modified 6082 Al-Mg-Si alloy and in the same alloy added with 0.117wt.% Sc, subjected to severe plastic deformations. Materials were deformed by equal-channel angular pressing using route BC, up to a true strain of ∼12. A strain of ~4 produced a sub-micrometer scale microstructure with very fine cells (nanometer scale) in the grain interior. The role of fine dispersoids (Al3(Sc1-x,Zrx)) was investigated by transmission electron microscopy techniques and discussed. Dispersoids were responsible for a more complex dislocation substructure with strain. Compared to the commercial parent alloy, block wall formation and propagation were favored by the presence of Sc-Zr containing dispersoids, while cell boundary evolution was less affected, compared to the commercial parent alloy. Mean misorientation across block walls increased with strain much more in the Sc-Zr containing alloy, reaching a plateau, starting from a true strain of ∼8. Misorientation across cell boundaries continuously increased to ∼8° and ∼5° for the Sc-Zr and Zr containing alloy, respectively.

2010 ◽  
Vol 16 (S2) ◽  
pp. 1270-1271
Author(s):  
H Yoshida ◽  
T Shimizu ◽  
T Uchiyama ◽  
H Kohno ◽  
S Takeda

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Author(s):  
J.G. Wen ◽  
K.K. Fung

Bi-based superconducting phases have been found to be members of a structural series represented by Bi2Sr2Can−1Cun−1On+4, n=1,2,3, and are referred to as 2201, 2212, 2223 phases. All these phases are incommensurate modulated structures. The super space groups are P2/b, NBbmb 2201, 2212 phases respectively. Pb-doped ceramic samples and single crystals and Y-doped single crystals have been studied by transmission electron microscopy.Modulated structures of all Bi-based superconducting phases are in b-c plane, therefore, it is the best way to determine modulated structure and c parameter in diffraction pattern. FIG. 1,2,3 show diffraction patterns of three kinds of modulations in Pb-doped ceramic samples. Energy dispersive X-ray analysis (EDAX) confirms the presence of Pb in the three modulated structures. Parameters c are 3 0.06, 38.29, 30.24Å, ie 2212, 2223, 2212 phases for FIG. 1,2,3 respectively. Their average space groups are all Bbmb.


Sign in / Sign up

Export Citation Format

Share Document