Effect of Advanced Cooling Front (ACF) Phenomena on Film Boiling and Transition Boiling Regimes in the Secondary Cooling Zone during the Direct-Chill Casting of Aluminium Alloys

2006 ◽  
Vol 519-521 ◽  
pp. 1687-1692 ◽  
Author(s):  
Etienne J.F.R. Caron ◽  
Mary A. Wells

Accurate knowledge of the boundary conditions is essential when modeling the Direct-Chill (DC) casting process. Determining the surface heat flux in the secondary cooling zone, where the greater part of the heat removal takes place, is therefore of critical importance. Boiling water heat transfer phenomena are quantified with boiling curves which express the heat flux density as a function of the surface temperature. Compilations of boiling curves for the DC casting of aluminum alloys present a good agreement at low surface temperatures but a very poor agreement at higher surface temperatures, in the transition boiling and film boiling modes. Secondary cooling was simulated by spraying instrumented samples with jets of cooling water. Quenching tests were conducted first with a stationary sample, and then with a sample moving at a constant “casting speed” in order to better simulate the DC casting process. The ejection of the water film in quenching tests with a stationary sample and the relative motion between the sample and the water jets both lead to an Advanced Cooling Front (ACF) effect, in which cooling occurs through axial conduction within the sample rather than through boiling water heat transfer at the surface. The heat flux density and surface temperature were evaluated using the measured thermal history data in conjunction with a two-dimensional inverse heat conduction (IHC) model. The IHC model developed at the University of British Columbia was able to take into account the advanced cooling front effect. The effect of various parameters (initial sample temperature, casting speed, water flow rate) on the rate of heat removal in the film boiling and transition boiling regimes was investigated.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


Metallurgist ◽  
1979 ◽  
Vol 23 (12) ◽  
pp. 847-849
Author(s):  
M. Z. Levin ◽  
N. G. Pirozhenko ◽  
D. A. Dyudkin ◽  
A. M. Kondratyuk ◽  
V. N. Bordyugov

2010 ◽  
Vol 654-656 ◽  
pp. 783-786 ◽  
Author(s):  
Arvin Prasad ◽  
Ian F. Bainbridge

The process of direct chill (DC) casting of aluminium and magnesium alloys is regarded as a mature technology. The thrust of more recent work to understand and upgrade the technology has been centred on developing models of the process, the most advanced of which (e.g., Alsim and Calcasoft) have been used to examine what may be considered macro-features of the process (macro-segregation, hot cracking, etc.). These models, being macroscopic, rarely elaborate on the role of mould-wall heat transfer in the DC casting process. As part of the work on DC casting being conducted at CAST, for the investigation of small scale features of the process (e.g. heat extraction through the mould wall), a 2D finite Difference model of the process near the mould-wall region has been developed. The basic features of the model are described and initial results outlined.In particular, the effect of mould-wall heat transfer on the solid shell formed during the steady state regime of DC casting will be presented.


2015 ◽  
Vol 817 ◽  
pp. 48-54 ◽  
Author(s):  
Hai Jun Wang ◽  
Jun Xu ◽  
Zhi Feng Zhang ◽  
Bo Liang ◽  
Ming Wei Gao

A new coupling stirring technology was proposed and used to prepare direct chill (DC) ingots. Ingots of 7075 alloy were produced by a process of normal direct chill (NDC) casting and coupling-stirring direct chill (CDC) casting, respectively. The effect of the technology on the microstructures, composition segregation and mechanical properties of the ingots was investigated. The results showed that the temperature variation in the CDC casting process was more uniform than that in the NDC casting process. The grain of the CDC ingots was finer and more spherical than the grain of NDC ingots. The grain size at the edge, 1/2 radius, and center position in CDC ingot decrease by 28%, 22%, and 24% comparing with the grain size of the corresponding positions of NDC ingot, respectively. The billets with higher performance and lower macro-segregation were obtained in case of CDC. The flow stresses and the difference in different positions of DC ingots measured at Gleeble-1500D thermo-mechanical simulator decreased obviously when the coupling stirring technology is used in the casting process.


2011 ◽  
Vol 690 ◽  
pp. 137-140 ◽  
Author(s):  
Yu Bo Zuo ◽  
Bo Jiang ◽  
Zhong Yun Fan

A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process has been developed for production of high quality ingots and billets of light alloys. In the MC-DC casting process, intensive melt shearing provided by a newly developed rotor-stator unit is used to control the solidification process during the DC casting with a conventional DC caster. Experimental results of DC casting of Al- and Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce light alloy billets with significantly refined microstructure and substantially reduced cast defects. The effect of intensive melt shearing on grain refinement has been mainly attributed to the enhanced heterogeneous nucleation on well dispersed oxides occurring naturally in the alloy melt.


Author(s):  
Mainul Hasan ◽  
Latifa Begum

In this study, first a 3-D thermal model is developed for an open top, vertical direct chill (DC) casting process of rolling slabs (ingots) by taking into account the casting speed in the form of slag flow in the thermal connective-diffusion equation. The mushy region solidification characteristics of the process are accounted for through the implementation of the enthalpy porosity technique. The thermal model is later extended to a 3-D CFD model to account for the coupled turbulent heat transfer and solidification aspect of the process. Both models simulate an industrial-sized, hot-top type vertical Direct Chill (DC) slab caster for high strength aluminum alloy AA-7050. A staggered control volume based finite-difference scheme is used to solve the modeled equations and the associated boundary conditions. In the CFD model, the turbulent aspects of flow and solidification heat transfer are modeled using a low Reynolds number version of the k–ε eddy viscosity approach. Computed results for the steady-state phase of the casting process are presented for four casting speeds varying from 60 to 180 mm/min for a fixed inlet melt superheat of 32°C. Simulation results of the velocity and temperature fields and heat fluxes along the caster surface are presented for the CFD model and the shell thickness and sump depth are compared between the CFD and thermal models.


Sign in / Sign up

Export Citation Format

Share Document