Fundamental Coating Development Study to Improve the Isothermal Oxidation Resistance and Thermal Cycle Durability of Thermal Barrier Coatings

2006 ◽  
Vol 522-523 ◽  
pp. 247-254 ◽  
Author(s):  
Taiji Torigoe ◽  
Hidetaka Oguma ◽  
Ikuo Okada ◽  
Guo Chun Xu ◽  
Kazuhisa Fujita ◽  
...  

Thermal barrier coatings(TBCs) are used in high temperature gas turbines to reduce the surface temperature of cooled metal parts such as turbine blades[1]. TBC consist of a bondcoat (e.g. MCrAlY where M is Co, Ni, CoNi, etc.) and a partially stabilized zirconia ceramic topcoat. Usually, the MCrAlY bondcoat is applied by LPPS (low pressure plasma spray) or HVOF(high velocity oxi-fuel spray). The topcoat is applied by APS (atmospheric plasma splay) or EB-PVD (electron beam-physical vapor deposition). High temperature oxidation properties, thermal barrier properties and durability of TBC are very important to increase the reliability in high temperature service. In this study, new TBC has been investigated. The new TBC consists of a two-layered bondcoat (LPPS-MCrAlY plus dense PVD overlay MCrAlY) and the EB-PVD type YSZ columnar structure topcoat. As a result of evaluation tests, it was confirmed that the new TBC had better oxidation properties and durability than a conventional TBC system.

2012 ◽  
Vol 433-440 ◽  
pp. 315-318
Author(s):  
Seyid Fehmi Diltemiz ◽  
Melih Cemal Kushan

Thermal barrier coatings (TBCs) have been widely used by aero and land based gas turbines to protect hot section parts from oxidation and thermal loads. These coatings are generally consisting of multiple layers of coating (usually two) with each layer having a specific function. TBCs are generally deposited with air plasma spray (APS) or electron beam physical vapor deposition (EB-PVD) techniques. In this paper plasma sprayed TBCs were deposited on to 304 stainless steel substrates then ceramic surfaces were glazing with Nd-YAG laser. Metallographic examinations were applied to the samples to investigate microstructural changes in glazed ceramic layer. Both glazed and as-coated samples were subjected to oxidation tests to measure the high temperature oxidation resistance. The tests showed that, laser glazing is beneficial to oxidation resistance of TBCs. This improvement is attributed to sintering of zirconia layer which act as oxygen barrier and formed during glazing process.


Author(s):  
Mohammad Hassanzadeh ◽  
Paweł Sokołowski ◽  
Radek Musalek ◽  
Jan Medricky ◽  
Stefan Csaki

Abstract In this study; a novel self-healing concept is considered in order to increase the lifetime of thermal barrier coatings (TBCs) in modern gas turbines. For that purpose; SiC healing particles were introduced to conventional 8YSZ topcoats by using various plasma spray concepts; i.e.; composite or multilayered coatings. All topcoats were sprayed by SG-100 plasma torch on previously deposited NiCrAlY bondcoats produced by conventional atmospheric plasma spraying. Coatings were subjected to thermal conductivity measurements by laser flash method up to 1000°C; isothermal oxidation testing up to 200h at 1100°C and finally thermal cyclic fatigue (TCF) lifetime testing at 1100°C. Microstructural coating evaluation was performed by scanning electronic microscope (SEM); in the as-produced and post high-temperature tested states. This was done to analyze the self-healing phenomena and its influence on the hightemperature performance of the newly developed TBCs.


2013 ◽  
Vol 749 ◽  
pp. 617-632 ◽  
Author(s):  
Liang Wang ◽  
You Wang ◽  
Xiao Guang Sun

Thermal barrier coatings (TBCs) are very important ceramic coating materials due to their excellent performance at high temperature. Double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ TBCs, nanostructured single-ceramic-layer (SCL) 8YSZ and conventional SCL 8YSZ TBCs with the same thickness were fabricated by atmospheric plasma spraying in the present work. The static high temperature oxidation behaviour of the three as-sprayed coatings at 1000 and 1200 was investigated systematically. The results indicated that the LZ/8YSZ has higher oxidation resistance than that of SCL 8YSZ. The addition of LZ ceramic layer can increase the insulation temperature, impede the oxygen transferring to the bond coat and decrease the formation rate of the thermally grown oxide (TGO). The formation of the oxidized isolated islands in the bond-coat has decreased the effective thickness of the TGO at the bond coat/ceramic layer interface due to the depletion of the metallic elements in the bond-coat.


2021 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Esmaeil Poursaeidi ◽  
◽  
Farzam Montakhabi ◽  
Javad Rahimi ◽  
◽  
...  

The constant need to use gas turbines has led to the need to increase turbines' inlet temperature. When the temperature reaches a level higher than the material's tolerance, phenomena such as creep, changes in mechanical properties, oxidation, and corrosion occur at high speeds, which affects the life of the metal material. Nowadays, operation at high temperatures is made possible by proceedings such as cooling and thermal insulation by thermal barrier coatings (TBCs). The method of applying thermal barrier coatings on the turbine blade creates residual stresses. In this study, residual stresses in thermal barrier coatings applied by APS and HVOF methods are compared by Tsui–Clyne analytical model and XRD test. The analytical model results are in good agreement with the experimental results (between 2 and 8% error), and the HVOF spray method creates less residual stress than APS. In the end, an optimal thickness for the coating is calculated to minimize residual stress at the interface between the bond coat and top coat layers.


Author(s):  
I. G. Wright ◽  
B. A. Pint

Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100-250 μm thick layer of ceramic (most usually zirconia stabilized with an addition of 7–8 wt% of yttria), and this is deposited on to an approximately 50 μ thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably α-alumina) at the bond coating—ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.


Author(s):  
J. P. Feist ◽  
P. Y. Sollazzo ◽  
S. Berthier ◽  
B. Charnley ◽  
J. Wells

Thermal barrier coatings are used to reduce the actual working temperature of the high pressure turbine blade metal surface and hence permit the engine to operate at higher more efficient temperatures. Sensor coatings are an adaptation of existing thermal barrier coatings to enhance their functionality, such that they not only protect engine components from the high temperature gas, but can also measure the material temperature accurately and determine the health of the coating e.g. ageing, erosion and corrosion. The sensing capability is introduced by embedding optically active materials into the thermal barrier coatings and by illuminating these coatings with excitation light phosphorescence can be observed. The phosphorescence carries temperature and structural information about the coating. Accurate temperature measurements in the engine hot section would eliminate some of the conservative margins which currently need to be imposed to permit safe operation. A 50K underestimation at high operating temperatures can lead to significant pre-mature failure of the protective coating and loss of integrity. Knowledge of the exact temperature could enable the adaptation of the most efficient coating strategies using the minimum amount of air. The integration of an on-line temperature detection system would enable the full potential of thermal barrier coatings to be realised due to improved accuracy in temperature measurement and early warning of degradation. This in turn will increase fuel efficiency and reduce CO2 emissions. Application: This paper describes the implementation of a sensor coating system on a Rolls-Royce jet engine. The system consists of three components: industrially manufactured robust coatings, advanced remote detection optics and improved control and readout software. The majority of coatings were based on yttria stabilized zirconia doped with Dy (dysprosium) and Eu (europium), although other coatings made of yttrium aluminium garnet were manufactured as well. Coatings were produced on a production line using atmospheric plasma spraying. Parallel tests at Didcot power station revealed survivability of specific coatings in excess of 4,500 effective operating hours. It is deduced that the capability of these coatings is in the range of normal maintenance schedules of industrial gas turbines of 24,000 hours or even longer. An advanced optical system was designed and manufactured permitting easy scanning of coated components and also the detection of phosphorescence on rotating turbine blades (13k RPM) at stand-off distances of up to 400mm. Successful temperature measurements were taken from the nozzle guide vanes (hot), the combustion chamber (noisy) and the rotating turbine blades (moving) and compared with thermocouple and pyrometer installations for validation purposes.


Author(s):  
Winston Soboyejo ◽  
Patrick Mensah ◽  
Ravinder Diwan

This paper presents the results of an experimental study of the high-temperature isothermal oxidation behavior and micro-structural evolution in plasma sprayed thermal barrier coatings (TBCs) at temperatures between 900 and 1200 °C. Two types of specimens were produced for testing. These include a standard and vertically cracked (VC) APS. High temperature oxidation has been carried out at 900, 1000, 1100 and 1200 °C. The experiments have been performed in air under isothermal conditions. At each temperature, the specimens are exposed for 25, 50, 75 and 100 hours. The corresponding microstructures and microchemistries of the TBC layers are then examined using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy EDS. Changes in the dimensions of the thermally grown oxide (TGO) layer are determined as functions of time and temperature. The evolution of bond coat microstructures/interdiffusion zones and thermally grown oxide (TGO) layers are compared in TBCs with standard (STD) and vertically cracked (VC) microstructures.


Sign in / Sign up

Export Citation Format

Share Document