Evaluation of Schottky Barrier Height of Al, Ti, Au ,and Ni Contacts to 3C-SiC

2006 ◽  
Vol 527-529 ◽  
pp. 923-926 ◽  
Author(s):  
Masataka Satoh ◽  
H. Matsuo

The Schottky barrier height (SBH) of Al, Ti, Au, and Ni contacts to n- and p-type 3C-SiC is investigated by means of I-V and C-V measurements. All metal contacts to n- (net donor concentration: 1.0 x 1016 /cm3) and p-type (net acceptor concentration: 4 x 1016 /cm3) 3C-SiC show the rectifying I-V characteristics except for Al contact to n-type 3C-SiC. Only Al contact to n-type 3C-SiC shows the ohmic characteristics. As the work function of metal is increased from 4.3 (Ti) to 5.2 (Ni) eV, SBH for n-type 3C-SiC is increased from 0.4 to 0.7 eV and SBH for p-type 3C-SiC is decreased from 2.2 to 1.8 eV. The small change of SBH for 3C-SiC may be correlated to the crystal orientation and the defects on the surface of 3C-SiC.

1989 ◽  
Vol 148 ◽  
Author(s):  
J.R. Waldrop ◽  
R.W. Grant

ABSTRACTA new approach for extending the range of the Schottky barrier height ϕB of metal contacts to (100) GaAs is described. Very thin (∼ 10-30Å) heavily n-type and p-type Si or Ge interlayers are found to directly alter the GaAi interface Fermi energy EF. X-ray photoemission spectroscopy is used to determine EF during contact formation and the corresponding ϕB for thick contacts is measured by electrical methods. In an appropriate structure the ϕB range for contacts to n-type GaAs is ∼ 0.25 to 1.0 eV. For p-type GaAs ϕB has been increased to as much as 0.9 eV. This method of ϕBcontrol can be used for both Schottky barrier contact and nonalloyed ohmic contact applications. The results are interpreted in terms of a simple heterojunction model.


1988 ◽  
Vol 52 (21) ◽  
pp. 1794-1796 ◽  
Author(s):  
J. R. Waldrop ◽  
R. W. Grant

2012 ◽  
Vol 51 (9S2) ◽  
pp. 09MK01 ◽  
Author(s):  
Youngjun Park ◽  
Kwang-Soon Ahn ◽  
Hyunsoo Kim

Sign in / Sign up

Export Citation Format

Share Document