Study on the Intelligent Control of Springback in Stretch Bending Process Based on Neural Networks

2006 ◽  
Vol 532-533 ◽  
pp. 604-607
Author(s):  
Yong Jun Wang ◽  
Jun Biao Wang ◽  
Sheng Min Wei ◽  
Jiang Jun Jiang

In extrusion stretch bending process, there are many factors which affect springback of the workpiece such as mechanical properties of the material, friction condition and process parameters. The springback of same batch of extrusion is different at same forming parameters because of the variation of the mechanical properties of the material and the friction condition. A method of intelligent control of springback in stretch bending process is proposed by using ANN(artificial neural networks). The online identification model of the mechanical properties of the material and friction coefficient and the online prediction control model of springback of workpiece in stretch bending process are established by using ANN ,which are trained by the data of analysis calculation. It realizes the intelligent control on springback of stretch bending to online identify the material properties and friction coefficient and predict springback and adjust process parameters dynamically through the whole process of stretch bending. The results from the experiment state that the intelligent control method can suit the variation of mechanical properties of material and friction condition and improve the geometry precision.

2013 ◽  
Vol 372 ◽  
pp. 661-665
Author(s):  
Sheng Man Wang ◽  
Xin Hua Yang ◽  
Xing Lu

The bending beam of railway vehicle is made of thin stainless steel, with large sizes and unsymmetrical section, and prone to defects during stretch-bending forming process, such as wrinkling, cross-section distortion and so on. A reasonable trajectory of gripper jaws could make for mitigating the mentioned defects. The Finite Element Method was employed to fit the trajectory as well as simulate the forming process. The FE model was built by using the commercial FE software Hypermesh and ABAQUS/CAE. The analysis was carried out based on dynamic explicit and displacement control method. On this basis, the actual stretch bending process was developed according to the fitted trajectory and simulated process. The actual production process indicates that the formed beam can meet the design requirements, and the method is feasible and economical, as well as can contribute to a better understanding of stretch bending process and die design.


2021 ◽  
Vol 9 (3) ◽  
pp. 323-334 ◽  
Author(s):  
S. Hakimi ◽  
A. Soualem

The forming steps by permanent deformation controlled by the tools generate a distribution of stresses inside the material which directly depends on the work hardening properties of the latter. The change in boundary conditions following the removal of the tools imposes the material to redistribute the stresses in the sections in a manner compatible with the new boundary conditions. This new distribution necessarily operates by local elastic deformations that result globally in a general change of shape called springback. This geometrical deviation can be minimized by the meticulous focus of the tools, but it cannot generally be completely annihilated due to the influence of several parameters. For this reason, the study of the influence of the different technological factors and physico-metallurgical parameters on the springback for the different metals is very important to design and properly realize forming tools. The main objective of this work is to find solutions to problems encountered in sheet metal forming such as the problem of springback. Our work has two essential purposes: the first is summarized in an experimental study based on theoretical analyses. To this end, much effort is made to add a new design of parts for a U-type stretch-bending device and adapt it to a tensile testing machine. This design has the advantage of modifying and assembling all parameters affecting springback at the same time and also of carrying out several forming processes on the same device. The second goal is the experimental and numerical prediction of springback, and the study of the effect of various stretch-bending process parameters such as punch velocity, the orientation of the sheet (anisotropy), hold time and punch-die clearance on springback behavior under heat treatment of aluminum alloy sheets with three different rolling directions (0°,45°,90°). A finite element (FE) model of stretch-bending has been established by utilizing ABAQUS/CAE software. From this analysis, it can be concluded that the springback is affected by the anisotropy of the sheet and the heat treatment in the stretch-bending process. The obtained experimental results were compared with the numerical simulations found in good agreement.


2017 ◽  
Vol 59 (3) ◽  
pp. 265-271
Author(s):  
Mehrdad Sanei ◽  
Babak Manafi

2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


Author(s):  
Song Gao ◽  
Tonggui He ◽  
Qihan Li ◽  
Yingli Sun ◽  
Jicai Liang

The problem of springback is one of the most significant factors affecting the forming accuracy for aluminum 3D stretch-bending parts. In order to achieve high-efficiency and high-quality forming of such kind of structural components, the springback behaviors of the AA6082 aluminum profiles are investigated based on the flexible multi-points 3D stretch-bending process (3D FSB). Firstly, a finite element simulation model for the 3D FSB process was developed to analyze the forming procedure and the springback procedure. The forming experiments were carried out for the rectangle-section profile to verify the effectiveness of the simulation model. Secondly, the influence of tension on springback was studied, which include the pre-stretching and the post-stretching. Furthermore, the influences of the bending radius and bending sequence are revealed. The results show that: (1) The numerical model can be used to evaluate the effects of bending radius and process parameters on springback in the 3D FSB process effectively. (2) The pre-stretching has little effect on the horizontal springback reduction, but it plays a prominent role in reducing the springback in the vertical direction. (3) The increase of bending deformation in any direction will lead to an increase of springback in its direction and reduce the springback in the other direction. Besides, it reduces the relative error in both directions simultaneously. This research established a foundation to achieve the precise forming of the 3D stretch-bending parts with closed symmetrical cross-section.


Sign in / Sign up

Export Citation Format

Share Document