aluminum profiles
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 24)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Ana Carla PESSUTTO ◽  
◽  
Eliena JONKO

Aluminum stands out for being a light, corrosion-resistant, and recyclable metal, achieving wide coverage in the market. When incorporated into alloying elements, it is possible to acquire other desirable characteristics. Alloy 6063, intended for architectural purposes, has aesthetic, structural, and strength functions. This study aims to compare two different staining methods on the surface of anodized profiles of aluminum alloy 6063. Anodized finishing is performed through an electrolytic process using sulfuric acid as an electrolyte to change the surface layer of the material, ensuring a more resistant aluminum oxide film than that formed naturally. For decorative purposes, the anodic film coloration can be performed by several methodologies, including, in this case, the coloration by organic adsorption, with the use of aniline, and the electrolytic coloration, composed of tin sulfate salts, both for obtaining the black color. To compare, neutral saline mist tests, scanning electron microscopy analysis, determination of the anodic layer thickness, and immersion tests with 3.5 percent sodium chloride for 1000 hours. The results obtained highlight that both were shown to be resistant to corrosion due to the fact that they do not present corrosion points when exposed to the neutral saline mist test for 600 hours. In the immersion tests, both remained resistant to sodium chloride. Because both methodologies present satisfactory results in all tests, the quality of the applied stains is ensured, and it is found that they are equivalent when the parameters discussed are used.


Author(s):  
Ana Carla PESSUTTO ◽  
JONKO Eliena

Background: Aluminum stands out for being a light, corrosion-resistant, and recyclable metal, achieving wide coverage in the market. When incorporated into alloying elements, it is possible to acquire other desirable characteristics. Alloy 6063, intended for architectural purposes, has aesthetic, structural, and strength functions. Anodized finishing is performed through an electrolytic process, ensuring a more resistant aluminum oxide film than that formed naturally. For decorative purposes, the anodic film coloration can be performed by several methodologies, in this case, for the coloration by organic adsorption, with the use of aniline, and the electrolytic coloration, composed of tin sulfate salts, both for obtaining the black color. Aim: Compare of two different staining methods on the surface of anodized profiles of aluminum alloy 6063. Methods: Profile samples were collected and tests were carried out to measure the thickness of the anodic layer, immersion tests with 3,5 percent sodium chloride, for 1000 hours, and neutral saline mist, for 600 hours. Results and Discussion: Both methodologies proved to be resistant to immersion tests with sodium chloride, as well as with neutral saline mist, and these tests are quite aggressive and provide corrosion of the material when not well treated. Corrosion points were only seen at the intersections performed, and in the rest of thearea, no points were detected. Conclusions: The result of both methodologies was positive, considering tht there was no corrosion in the tested samples, except in the intersections performed, as well as the maintenance of the color in both tested methodologies, which was not expected in the literature. For future work, it is suggested to deepen the study to perform electrochemical impedance spectroscopy tests for exaluate the strength of the anodic film and perform anodizing with the same parameters, however, with different anilines to analyze their behavior.


2021 ◽  
Vol 66 (1) ◽  
pp. 34-44
Author(s):  
Jakub Skoczylas ◽  
Sylwester Samborski ◽  
Mariusz Kłonica

In the paper, acoustic emission (AE) system was presented as a method that can be used to monitor polymer material failures. Samples fabricated of two aluminum profiles bonded together with a thick layer of cured epoxy resin were subjected to fracture tests. Epidian 53 epoxy resin cured with Z1 curing agent as well as Epidian 5 epoxy resin cured with PAC curing agent were selected as adhesives. Acoustic emission parameters were acquired during Double Cantilever Beam (DCB) tests. The frequencies of elastic waves released during failure were then analyzed using both Fast Fourier Transformation (FFT) and Wavelet Transformation (WT) for the two materials.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012065
Author(s):  
Xuemei Huang ◽  
Yiru Luo ◽  
Chuhao Zhou ◽  
Rurong Deng

Abstract A new type of extrusion die is put forward, in which cemented carbide material is used to inlay the working part of the die, so as to improve the wear resistance of the die. The necessity of using cemented carbide in extrusion die is introduced. The selection of cemented carbide was introduced by taking the actual round tube aluminum profile as an example. The method for determining the size of cemented carbide and the mosaic method of cemented carbide were described. Based on the results of extrusion, the common extrusion die and cemented carbide extrusion die were compared. The results show that the wear resistance of the die can be greatly improved by the use of cemented carbide. Thus the life of the die is greatly improved.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1581
Author(s):  
Zhongyuan Shi ◽  
Yi Li ◽  
Jicai Liang ◽  
Ce Liang

The ABAQUS finite element simulation software is used to simulate the flexible multi-point three-dimensional stretch bending process of aluminum profiles. The effect of process parameters on the web thickness of rectangular profile in flexible multi-point three-dimensional stretch bending is studied by orthogonal experiment and range analysis. The process parameters used in the experiments include pre-stretching value, post-stretching value, the number of multi-point dies and friction coefficient. The optimal combination of process parameters is obtained by numerical simulation and experimental verification. When the aluminum profile is completed flexible multi-point stretch bending according to the best parameters, the thickness thinning of outer web and inner web is the smallest. The experimental result is closed to the numerical simulated results. The effectiveness of the numerical simulation is verified by the corresponding experimental methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaodong Wu

The mechanical behavior of the extruded 7003-T6 aluminum profiles used as automotive buffer beams is investigated. The correlation of the texture and the formation of the adiabatic shear band is analyzed. Copper texture, R texture, and S texture are the main reasons for the anisotropy of mechanical behavior of the profile, resulting in that the stress of the profile along the extrusion direction is higher than that perpendicular to the extrusion direction. Through finite element modeling (FEM), it can be found that the adiabatic shear band is developed in the sample if the dynamic loading direction is parallel to the extrusion direction, but it does not appear if the loading direction is perpendicular to the extrusion direction. When the dynamic loading direction is parallel to the extrusion direction, higher stress results in a lower energy barrier for shear localization. Therefore, the formation of the adiabatic shear band is susceptible along but is not sensitive perpendicular to the extrusion direction. This study provides technical support for the service of 7003 aluminum alloy in automobiles, which has important academic and engineering application value.


Author(s):  
Song Gao ◽  
Tonggui He ◽  
Qihan Li ◽  
Yingli Sun ◽  
Jicai Liang

The problem of springback is one of the most significant factors affecting the forming accuracy for aluminum 3D stretch-bending parts. In order to achieve high-efficiency and high-quality forming of such kind of structural components, the springback behaviors of the AA6082 aluminum profiles are investigated based on the flexible multi-points 3D stretch-bending process (3D FSB). Firstly, a finite element simulation model for the 3D FSB process was developed to analyze the forming procedure and the springback procedure. The forming experiments were carried out for the rectangle-section profile to verify the effectiveness of the simulation model. Secondly, the influence of tension on springback was studied, which include the pre-stretching and the post-stretching. Furthermore, the influences of the bending radius and bending sequence are revealed. The results show that: (1) The numerical model can be used to evaluate the effects of bending radius and process parameters on springback in the 3D FSB process effectively. (2) The pre-stretching has little effect on the horizontal springback reduction, but it plays a prominent role in reducing the springback in the vertical direction. (3) The increase of bending deformation in any direction will lead to an increase of springback in its direction and reduce the springback in the other direction. Besides, it reduces the relative error in both directions simultaneously. This research established a foundation to achieve the precise forming of the 3D stretch-bending parts with closed symmetrical cross-section.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3630
Author(s):  
Michał Rogala ◽  
Mirosław Ferdynus ◽  
Katarzyna Gawdzińska ◽  
Paweł Kochmański

The demand for lightweight, strong structural profiles is currently high in the transport industry, mechanical engineering, and construction. Therefore, it is important to evaluate their properties, especially mechanical properties. The main objective of this paper is to determine energy absorption coefficients and evaluate the crush resistance of thin-walled aluminum profiles using numerical simulation and empirical verification. This paper presents the compression results of testing of thin-walled aluminum profiles filled with a porous material (cast aluminum foam). The numerical analysis was conducted using the software Abaqus/CAE. Aluminum material data were obtained from a static tensile test performed on a Shimadzu machine. The experiment was performed on an Instron CEAST 9450HES dynamic hammer. Profiles with three shapes of crush initiators filled with aluminum foam measuring 40 mm–200 mm in 20 mm increments were numerically tested. A sample with a concave initiator filled with foams of 40 mm, 60 mm, 80 mm, and 120 mm in length was used to verify the numerical analyses. Energy absorption coefficients were determined from the analyses. The results of both analyses were tabulated to show the percentage differences. The study showed an increase in the Crush Load Efficiency (CLE) index by up to 33% for samples with the same crush initiator. In addition, it was noted that the use of porous fill does not increase the value of initiating Peak Crushing Force (PCF), which indicates the generation of much smaller overloads dangerous for vehicle passengers.


2021 ◽  
Author(s):  
Yi Li ◽  
Zhiheng Hu ◽  
Jicai Liang ◽  
Ce Liang

Abstract The tensile and bending process of asymmetric L-shaped aluminum alloy profile is studied by the Abaqus software using the finite element numerical simulation method. The geometric parameters of the ultrasonic-assisted vibration multi-point die (UMPD), and the law of influence on the stress-strain and spring-back of the L-section profile after bending are studied. The results show that the UMPD can reduce the forming stress of the profile during plastic deformation, and the stress-strain distribution of the aluminum profile is more uniform. The changes in the ultrasonic vibration frequency and amplitude of the mold are beneficial to reduce the spring-back of aluminum profiles. The ultrasonic process parameters with a vibration frequency of 20 kHz and an amplitude of 0.02 mm have the best effect on suppressing spring-back, which is reduced by 20.6% compared to the case of no ultrasonic application. Finally, it is verified by experiments that the experimental results are basically consistent with the simulation results, and the changing trend of spring-back deformation is consistent.


2021 ◽  
Vol 6 (3) ◽  
pp. 172-181
Author(s):  
Mohammad AL-Tahat ◽  
Issam Jalham ◽  
Abbas Al-Refaie ◽  
Mohammed Fawzi Alhaj Yousef

Sign in / Sign up

Export Citation Format

Share Document