Austenite-Ferrite Transformation in Non-Oriented Electrical Steels

2007 ◽  
Vol 560 ◽  
pp. 85-89
Author(s):  
Enrique Díaz Barriga-Castro ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The aim of the present work is to determine the austenite to ferrite transformation temperatures in a Si-Al non-oriented electrical steel. Critical transformation temperatures on heating and cooling are determined using an in-situ X-ray diffraction technique where the specimen is heated or cooled in a stepwise manner. The transformation temperatures are estimated from changes in the intensities of the (110)α and (111)γ peaks as a function of temperature. The time evolution of the microstructure resulting from isothermal heat treatments at temperatures between 800 and 1000 °C applied after cooling from 1050 °C is followed by quantitative metallography on samples quenched into water. The results show that, on cooling, formation of ferrite starts at about 950 °C and ends at 790 °C, indicating a strong effect of Si and Al on the austenite to ferrite and eutectoid transformations. These results suggest that the low tensile ductility exhibited by this material at temperatures near 1000 °C can be attributed to strain localization in strain-induced ferrite formed at temperatures as high as 1025 °C.

2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  

1984 ◽  
Vol 37 ◽  
Author(s):  
Edward Beam ◽  
D. D. L. Chung

AbstractX-ray diffraction was used in situ to study the phase transitions which occurred in 1500 Å Au/GaAs(100) upon heating and cooling. The reaction between Au and GaAs took the form Au + Ga → α Au-Ga. Upon heating, α Au-Ga completely dissolved in liquid Au-Ga. Upon subsequent cooling, β Au-Ga (or Au7Ga2) formed. In 1 atm of nitrogen, phase transitions were observed reversibly at 525 ± 25°C (due to the complete dissolution of α Au-Ga upon heating) and 415 ± 5°C (due to the peritectic transformation of β Au-Ga to α Au-Ga and liquid Au-Ga upon heating). In a vacuum of 425 μ (0.031 Kg/2m) similar phase transitions were observed at 425 ± 25°C and 387 ± 13°C, respectively.


2010 ◽  
Vol 96 (15) ◽  
pp. 153105 ◽  
Author(s):  
K. L. Saenger ◽  
J. C. Tsang ◽  
A. A. Bol ◽  
J. O. Chu ◽  
A. Grill ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 158-168
Author(s):  
Melanie Nentwich ◽  
Tina Weigel ◽  
Carsten Richter ◽  
Hartmut Stöcker ◽  
Erik Mehner ◽  
...  

Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1115
Author(s):  
Si Gao ◽  
Takuma Yoshimura ◽  
Wenqi Mao ◽  
Yu Bai ◽  
Wu Gong ◽  
...  

Intermetallic compounds are usually considered as deleterious phase in alloy designing and processing since their brittleness leads to poor ductility and premature failure during deformation of the alloys. However, several studies recently found that some alloys containing large amounts of NiAl-type intermetallic particles exhibited not only high strength but also good tensile ductility. To clarify the role of the intermetallic particles in the excellent tensile properties of such alloys, the tensile deformation behavior of an ultrafine-grained Fe-Mn-Al-Ni-C alloy containing austenite matrix and B2 intermetallic particles was investigated by using in situ synchrotron radiation X-ray diffraction in the present study. The elastic stress partitioning behavior of two constituent phases during tensile deformation were quantitively measured, and it was suggested that B2 particles played an important role in the high strength and large tensile ductility of the material.


2021 ◽  
Vol 316 ◽  
pp. 295-299
Author(s):  
Nikolai N. Nikul'chenkov ◽  
Andrey A. Redikul'tsev ◽  
Mikhail L. Lobanov

Solid-state amorphization process occurring at 600-1060 °C continuous annealing was observed by non-ambient x-ray diffraction on Fe-3%Si-0.5%Cu alloy surface with MgO as thermostable coating. The phenomenon was occurred at α→γ transformation temperatures (920-960 °C) in a layer consisting of Si solid solution in α-Fe and oxides (MgFe)2SiO4, (MgFe)O, SiO2. Amorphous state remained both during heating and cooling to 20 °C. Simulation for diffusion amorphization of Fe (Si) solid solution was proposed. Mg2Si complexes are reduced from oxides by hydrogen then transfer to solid solution and solid-state amorphization is occurred.


2010 ◽  
Vol 25 (1) ◽  
pp. 31-37
Author(s):  
F. Equihua ◽  
A. Salinas

This paper describes a method to determine the equilibrium transformation temperatures in low C steels using the in situ high-temperature X-ray diffraction technique. The samples were heated and then cooled from 1000 to 720 °C in a stepwise manner decreasing to −10 °C. Austenite and ferrite fractions were determined by a quantitative method using the integrated intensities of austenite (111)γ and ferrite (110)α peaks from X-ray diffraction patterns. The effect of the temperature on interplanar d spacings of (111) and (110) crystallographic planes was determined using 2θ maximum positions of the austenite (111)γ and ferrite (110)α peaks. The equilibrium transformation temperatures were determined to be Ae1=720 °C and Ae3=950 °C. The results are in excellent agreement with those obtained by dilatometric analysis and Thermo-Calc phase diagram simulation software. In addition, the results were supported by microstructural observations: the formation of thin ferrite films (5–10 μm) was observed at temperatures near to experimental Ae3.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2017 ◽  
Vol 72 (6) ◽  
pp. 355-364
Author(s):  
A. Kopp ◽  
T. Bernthaler ◽  
D. Schmid ◽  
G. Ketzer-Raichle ◽  
G. Schneider

Sign in / Sign up

Export Citation Format

Share Document