Compressive Behavior of Ultrafine-Grained Mg-Zn-Y-Zr Alloy Containing Quasicrystalline Phase

2008 ◽  
Vol 584-586 ◽  
pp. 287-292
Author(s):  
Ming Yi Zheng ◽  
S.W. Xu ◽  
Wei Min Gan ◽  
Kun Wu ◽  
Shigeharu Kamado ◽  
...  

An ultrafine-grained (UFG) Mg-5.0wt%Zn-0.9wt%Y-0.2wt%Zr magnesium alloy with a grain size of about 0.8 µm was produced by subjecting the extruded alloy to equal channel angular pressing (ECAP) for 8 passes at 473 K. Compressive testing was performed on the ECAPed alloy in a temperature range from 423 K to 523 K and under strain rates from 1.67×10-3 to 1.67×10-1 s-1. The ultrafine grains of the ECAPed alloy were stable during compression because of the presence of the dispersion of a fine quasicrystal I-phase and of precipitates in the alloy, which restricted grain growth. The activation energy for the compression at the temperature range from 423 K to 523 K is close to the value for grain boundary diffusion in magnesium, indicating that the compressive deformation is mainly controlled by grain-boundary sliding.

2010 ◽  
Vol 667-669 ◽  
pp. 915-920
Author(s):  
Konstantin Ivanov ◽  
Evgeny V. Naydenkin

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.


2007 ◽  
Vol 345-346 ◽  
pp. 597-600
Author(s):  
Duck Young Hwang ◽  
Kion Kwon ◽  
Dong Hyuk Shin ◽  
Kyung Tae Park ◽  
Young Gun Ko ◽  
...  

Ultrafine grained (UFG) 5083 Al and 5154 Al alloys were prepared by equal channel angular pressing (ECAP) with an effective strain of ~ 4 or ~ 8. This investigation was aimed at examining the effect of the ECAP strain and post-rolling inducing different microstructure in these alloys on the deformation mechanisms at low temperature superplastic (LTS) and high strain superplastic (HSRS) regimes. The sample after 4 passes (a strain of ∼ 4) did not exhibit LTS, but superplastic elongations were obtained in the sample after 8 passes (a strain of ∼ 8). An analysis of the mechanical data in light of the standard deformation mechanisms revealed that deformation of the sample after 4 passes was governed by dislocation climb while grain boundary sliding attributed to LTS of the sample after 8 passes. In addition, the 5154 Al alloy processed by ECAP and postrolling was capable of enhancing HSRS elongation significantly. An analysis revealed that the deformation mode was changed from dislocation viscous glide to grain boundary sliding by additional ECAP strain and post-rolling.


2010 ◽  
Vol 297-301 ◽  
pp. 1002-1009 ◽  
Author(s):  
Faina Muktepavela ◽  
R. Zabels

Mechanical properties, microstructure of the Sn–38wt. %Pb eutectic and the development of deformation - induced diffusion processes on interphase boundaries (IB) were investigated. Experiments were carried out both in deformed and annealed states of eutectic using micro- and nanoindentation, SEM, AFM and optical microscopy techniques. It was found that the deformation of the annealed alloy is localized at the Pb/Sn interphase boundaries and occurs by grain boundary sliding (GBS) accompanied by sintering micropore processes under the action of the capillary forces on the Pb/Sn IB. During severe plastic deformation of Sn-Pb eutectic phase transition in the Sn grain boundary occurs. This deformation-induced process takes place due to the wetting of tin with Pb. These diffusion accommodation processes (sintering and wetting) are facilitated by the low values of the Pb/Sn interphase energy (0.07 J/m2). Wetting is thermodynamically favourable because the condition γgb > 2 γib is satisfied and it is also kinetically allowed due to the relatively high homologous temperature (> 0.5•Tm). The obtained values of the nanohardness and elastic modulus evidence that the IBs in the Sn–Pb eutectic have to be considered as a separate quasi-phase with its own properties.


2011 ◽  
Vol 291-294 ◽  
pp. 1173-1177
Author(s):  
Zi Ling Xie ◽  
Lin Zhu Sun ◽  
Fang Yang

A theoretical model is developed to account for the effects of strain rate and temperature on the deformation behavior of ultrafine-grained fcc Cu. Three mechanisms, including dislocation slip, grain boundary diffusion, and grain boundary sliding are considered to contribute to the deformation response simultaneously. Numerical simulations show that the strain rate sensitivity increases with decreasing grain size and strain rate, and that the flow stress and tensile ductility increase with either increasing strain rate or decreasing deformation temperature.


2006 ◽  
Vol 503-504 ◽  
pp. 475-480 ◽  
Author(s):  
Masafumi Noda ◽  
Kunio Funami

The grain boundary sliding and the formation of slipped bands and cavitations during biaxial tensile deformation were examined in fine grained Al-Mg alloy. Biaxial tensile testing was conducted with cruciform specimens at initial strain rates of 10-4 to 101s-1. It was found that at the same equivalent strain conditions, the number of cavities under biaxial tension is significantly greater than that under uniaxial tension. A greater prevalence of slipped bands and grain separations were clearly observed under biaxial stress than under uniaxial stress. It was suggested that development of slipped bands resulted from the formation of elongated cavities and multiple deformed bands under biaxial stress. Additionally, the m-value under biaxial stress remained at about 0.3 over a wide range of strain rates. The effects of grain separation and formation of cavities were related to the motion of grain boundary sliding, grain size and loading conditions.


2016 ◽  
Vol 838-839 ◽  
pp. 106-109 ◽  
Author(s):  
Tetsuya Matsunaga ◽  
Hidetoshi Somekawa ◽  
Hiromichi Hongo ◽  
Masaaki Tabuchi

This study investigated strain-rate sensitivity (SRS) in an as-extruded AZ31 magnesium (Mg) alloy with grain size of about 10 mm. Although the alloy shows negligible SRS at strain rates of >10-5 s-1 at room temperature, the exponent increased by one order from 0.008 to 0.06 with decrease of the strain rate down to 10-8 s-1. The activation volume (V) was evaluated as approximately 100b3 at high strain rates and as about 15b3 at low strain rates (where b is the Burgers vector). In addition, deformation twin was observed only at high strain rates. Because the twin nucleates at the grain boundary, stress concentration is necessary to be accommodated by dislocation absorption into the grain boundary at low strain rates. Extrinsic grain boundary dislocations move and engender grain boundary sliding (GBS) with low thermal assistance. Therefore, GBS enhances and engenders SRS in AZ31 Mg alloy at room temperature.


2010 ◽  
Vol 667-669 ◽  
pp. 677-682 ◽  
Author(s):  
Nguyen Q. Chinh ◽  
Tamás Csanádi ◽  
Jenő Gubicza ◽  
Ruslan Valiev ◽  
Boris Straumal ◽  
...  

Most ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) exibit only limited ductility which is correlated with the low strain rate sensitivity (SRS) of these materials. Recently, it was demonstrated that SPD is capable of increasing the room temperature ductility of aluminum-based alloys attaining elongations up to 150%, together with relatively high strain rate sensitivity. In the present work, additional results and discussions are presented on the effect of grain boundary sliding (GBS) and SRS on the ductility of some UFG metals and alloys. The characteristics of constitutive equations describing the steady-state deformation process are quantitatively analyzed for a better understanding of the effects of grain boundaries and strain rate sensitivity.


2007 ◽  
Vol 551-552 ◽  
pp. 199-202 ◽  
Author(s):  
Zhan Ling Zhang ◽  
Yong Ning Liu ◽  
Jie Wu Zhu ◽  
G. Yu

Ultrahigh carbon steel containing 1.6 wt pct C was processed to create microduplex structure consisting of fine-spheroidized carbides and fine ferrite grains. Elongation-to-failure tests were conducted at strain rates from 10-4s-1 to 15×10-4s-1, and at temperatures from 600 °C to 850 °C. The steel exhibited superplasticity at and above 700 °C when testing at a strain rate of 10-4s-1, and at 800 °C when testing at strain rates of 7×10-4s-1 and slower. The grains retained the equiaxed shape and initial size during deformation; dynamic grain growth was not observed after superplastic deformation, whereas carbide coarsening was observed. It is concluded that the fine ferrite grains or austensite grains are stabilized by the grain boundary carbides, and grain-boundary sliding controlled by grain boundary diffusion is the principal superplastic deformation mechanism at temperatures in the range of 700-850 °C.


Sign in / Sign up

Export Citation Format

Share Document