Greenhouse Gas Emissions Attributable to High Pressure Die Casting

2009 ◽  
Vol 618-619 ◽  
pp. 21-26 ◽  
Author(s):  
Ambavalavanar Tharumarajah ◽  
Dayalan R. Gunasegaram ◽  
Paul Koltun

In spite of die castings being amongst the highest volume items manufactured by the metalworking industry, the influence of high pressure die casting (HPDC) process parameters on greenhouse gas (GHG) emissions remains largely unreported. In this article, the authors discuss the effect of some HPDC process parameters on GHG emissions using cradle-to-gate life cycle assessment (LCA) for both aluminium and magnesium alloys. Although the impacts reduced with increasing yields in both cases, it was determined that the GHG impact of magnesium alloy HPDC was more sensitive to HPDC yield irrespective of the ratio of primary/secondary alloys in the melt charge. The reasons for this include a greater dependence of magnesium alloy HPDC on high-emitting primary processing and the use of the highly potent GHG SF6 for melting. For magnesium alloy HPDC, a decrease in quality assurance (QA) rejects and cycle times also reduced GHG emissions, although their influences were found to be an order lower than that of yield.

Author(s):  
M. Imad Khan ◽  
Saeid Nahavandi ◽  
Yakov Frayman

This chapter presents the application of a neural network to the industrial process modeling of high-pressure die casting (HPDC). The large number of inter- and intradependent process parameters makes it difficult to obtain an accurate physical model of the HPDC process that is paramount to understanding the effects of process parameters on casting defects such as porosity. The first stage of the work was to obtain an accurate model of the die-casting process using a feed-forward multilayer perceptron (MLP) from the process condition monitoring data. The second stage of the work was to find out the effect of different process parameters on the level of porosity in castings by performing sensitivity analysis. The results obtained are in agreement with the current knowledge of the effects of different process parameters on porosity defects, demonstrating the ability of the MLP to model the die-casting process accurately.


2008 ◽  
Vol 56 ◽  
pp. 170-175 ◽  
Author(s):  
Matthias Rübner ◽  
Carolin Körner ◽  
Robert F. Singer

The complete integration of piezoceramic sensor/actuator-modules into metal components using high pressure die casting is a promising approach for the fabrication of multifunctional structural elements with enhanced properties. A technique providing stabilization and protection of the module during the highly dynamic mould filling is presented. Demonstration parts are produced which are fully capable to detect vibrations. An approach to characterize this sensory functionality of the adaptronic system is presented.


2014 ◽  
Vol 922 ◽  
pp. 801-806
Author(s):  
Robert Watson ◽  
Tayeb Zeguer ◽  
Simon Ruffle ◽  
William D. Griffiths

Aluminium High Pressure Die Castings are economical to produce in high volumes. However, as greater structural demands are placed on such castings, a more detailed understanding is required of the defects which limit their strength. The process is prone to high levels of surface turbulence and fluid break-up, resulting in the entrainment of air into the liquid metal, which may manifest as trapped air porosity or bifilm defects in the finished part. A novel algorithm was developed and integrated into a commercial computational fluid dynamics (CFD) package, to model mould filling, and the formation and transport of such entrainment defects. A commercial High Pressure Die Casting was simulated using this algorithm, to illustrate its application. Castings were also produced, and the results of tensile testing were summarised in the form of Weibull statistics. It was found that where the algorithm predicted a greater quantity of entrained surface film, a reduction in UTS of about 10% was also observed.


2010 ◽  
Vol 649 ◽  
pp. 473-479 ◽  
Author(s):  
Jenő Dúl ◽  
Richárd Szabó ◽  
Attila Simcsák

Quality of high pressure die castings is influenced by a lot of factors. Among them, the most important ones are the melt-, and die temperatures. This paper shows a data acquisition system, developed for measuring the melt and die temperatures and the results of the temperature measurements obtained under variable conditions. Evaluation of the relationship between the interrelated temperatures and the casting properties is based on analyzing the structure of the castings.


Sign in / Sign up

Export Citation Format

Share Document