Determining Elastic Constants of Material Using Optimization Method and Vibration Test

2009 ◽  
Vol 628-629 ◽  
pp. 89-96
Author(s):  
Yu Hua Lin ◽  
Chia Lung Chang

This paper proposes an inverse method to obtain the elastic properties of material. The sum of the squared differences between the experimental resonance frequencies and calculated resonance frequencies from the finite element method is chosen as the objective function. The proposed method presents an optimization method, Hybrid Genetic /Simulated Annealing algorithm, to determine the elastic properties. When the objective function reaches its minimum value, its corresponding design variables are the elastic constants of the material. The inverse method is applied to determine the elastic constants of aluminum plate, Glass/PP laminate, and double coated steel plate .The results indicate that for few elastic constants as an aluminum plate, Hybrid Genetic /Simulated Annealing algorithm has no apparent improvement, but more calculation time in comparison method. While simulated annealing while for Glass/PP laminate and double coated steel plate with more elastic constants, Hybrid Genetic /Simulated Annealing algorithm is superior to the traditional simulated annealing method.

2020 ◽  
Vol 20 (03) ◽  
pp. 2050031
Author(s):  
Qiang Han ◽  
Xuan Zhang ◽  
Kun Xu ◽  
Xiuli Du

The optimum design of distributed tuned mass dampers (DTMDs) is normally based on predefined restrictions, such as the location and/or mass ratio of the tuned mass dampers (TMDs). To further improve the control performance, a free parameter optimization method (FPOM) is proposed. This method only restricts the total mass of the DTMDs system and takes the installation position, mass ratio, stiffness and damping of each TMD as parameters to be optimized. An improved hybrid genetic-simulated annealing algorithm (IHGSA) is adopted to find the optimum values of the design parameters. This algorithm can solve the non-convexity and multimodality problems of the objective function and is quite effective in dealing with the large amount of computations in the free parameter optimization. A numerical benchmark model is adopted to compare the control efficiency of FPOM with conventional control scenarios, such as single TMD, multiple TMDs and DTMDs optimized through conventional methods. The results show that the DTMDs system optimized by using FPOM is superior to the other control scenarios for the same value of mass ratio.


2009 ◽  
Vol 83-86 ◽  
pp. 198-205
Author(s):  
Yu Hua Lin ◽  
Chia Lung Chang

This paper presents a inverse method to derive the material properties from the resonance frequencies of a free-edge test specimen based on modal vibration test. A mixed numerical experimental identification procedure is used for this purpose. Finite element models of the test plate is simultaneously updating and reproduces the updating frequencies, then optimal procedure is running. The sum of the squared differences between the experimental and the finite element method numerical resonance frquencies is the objective function. To seek practical solutions, here presents a global optimization method--simulated annealing method for the determination of the elastic properties. The inverse method is applied to determine the elastic constants of aluminum , carbon/epoxy , Glass/PP composite material and double coated steel plate. The results indicate that the method can obtain very accurate elastic constants for aluminum , Glass/PP , carbon/epoxy composite material ,but for double coated steel plate , if the individual layer of the three different layers is as isotroptic material having six elastic constants , the method can obtain very accurate results , but if it is as transversely isotropic material having twelve elastic constants, the evaluating elastic constants are bad.


2021 ◽  
Vol 28 (2) ◽  
pp. 101-109

Software testing is an important stage in the software development process, which is the key to ensure software quality and improve software reliability. Software fault localization is the most important part of software testing. In this paper, the fault localization problem is modeled as a combinatorial optimization problem, using the function call path as a starting point. A heuristic search algorithm based on hybrid genetic simulated annealing algorithm is used to locate software defects. Experimental results show that the fault localization method, which combines genetic algorithm, simulated annealing algorithm and function correlation analysis method, has a good effect on single fault localization and multi-fault localization. It greatly reduces the requirement of test case coverage and the burden of the testers, and improves the effect of fault localization.


Sign in / Sign up

Export Citation Format

Share Document