Deformation Behavior and Plastic Strain Localization of Nanostructured Materials Produced by Severe Plastic Deformation

2009 ◽  
Vol 633-634 ◽  
pp. 107-119 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya

The literature on the deformation behavior and plastic strain localization inherent to nanostructured metallic polycrystals produced by severe plastic deformation techniques is reviewed. The effects of the texture, structure heterogeneity and state of grain boundaries on the special features and evolution of mesoscopic and macroscopic localized deformation bands are investigated. The role of grain-boundary sliding in the development of mesoscopic plastic deformation bands is discussed.

2018 ◽  
Vol 16 (1) ◽  
pp. 77 ◽  
Author(s):  
Ruslan Balokhonov ◽  
Varvara Romanova ◽  
Ekaterina Batukhtina ◽  
Maxim Sergeev ◽  
Evgeniya Emelianova

A crystal plasticity approach was used to study the effects of grain shape and texture on the deformation behavior of friction stir weld (FSW) microregions. The explicit stress-strain analysis was performed for two representative grain structures with equiaxed and extended grains. Grain orientations were assigned to simulate no texture or a weak or strong cubic texture. Calculations have shown that the texture gave rise to earlier plastic strain localization on a larger scale. The highest stresses were found to develop in a non-textured specimen with equiaxed grains where the grain boundaries served as a barrier to dislocation motion. In both equiaxed and extended grain structures with a strong cubic texture no pronounced strain localization was seen on the grain scale but mesoscale shear bands appeared early in the deformation process. The calculations have shown that the microstructure-based simulation is a reasonable tool to study the deformation behavior of FSW materials, which is difficult to be predicted within macroscopic models alone.


Author(s):  
Prosenjit Das ◽  
Sk. Tanbir Islam ◽  
Sudip K Samanta ◽  
Santanu Das

In the present work, microscale deformation behavior, plastic strain localization, and plastic instability of rheocast Al–Si–Mg (A356) alloy have been investigated using micromechanical approach. For this purpose, two-dimensional microscale models (representative volume elements) have been developed using actual microstructure of the cast samples made under three different process conditions. Microstructure of the above-mentioned alloy consists of two different phases, such as aluminum-rich primary phase and silicon-rich eutectic phase. In line with that, composite micromechanical models have been developed to analyze them within the finite element framework. Rheocasting has been performed using cooling slope with two different slope angles of 45° and 60°, and comparison has been made with the conventional cast samples of the alloy that has been cast directly from the superheated molten state. Different boundary conditions have been assumed to perform finite element based simulation, using a popular finite element solver ABAQUS, depending upon the position of representative volume elements on the cylindrical tensile specimen. Under uniaxial tensile loading, ductile failure mode is predicted in the form of plastic strain localization due to incompatible deformation between the phases. This indicates inhomogenity of microstructure that determines the damage initiation process within this material, as there is no damage or failure criterion specified during the finite element analysis. Grain size, shape, and orientation of the primary aluminum phase are found to play a vital role on deformation behavior and failure mode of the materials investigated in this study.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2020 ◽  
Author(s):  
M. V. Nadezhkin ◽  
S. A. Barannikova ◽  
A. M. Nikonova

2011 ◽  
Vol 683 ◽  
pp. 69-79 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
Konstantin Ivanov

In this review the investigations of deformation process development are discussed which were carried out by tension and creep in the temperature range Т<0.4Tm (here Тm is the absolute melting point of material) for nanostructured metals produced by the methods of severe plastic deformation. The contribution of grain boundary sliding to the total deformation in the above temperature interval is also considered. An analysis is made of the effect of grain size and grain boundary state on the evolution of grain boundary sliding and cooperative grain boundary sliding in nanostructured metals.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2018 ◽  
Vol 21 (4) ◽  
pp. 314-319 ◽  
Author(s):  
T. V. Tretyakova ◽  
V. E. Wildemann

2021 ◽  
pp. 22-30
Author(s):  
S. A Barannikova ◽  
A. M Nikonova ◽  
S. V Kolosov

This work deals with studying staging and macroscopic strain localization in austenitic stainless steel 12Kh18N9T within a temperature range of 143 K < T < 420 K. The visualization and evolution of macroscopic localized plastic deformation bands at different stages of work hardening were carried out by the method of the double-exposure speckle photography (DESP), which allows registering displacement fields with a high accuracy by tracing changes on the surface of the material under study and then comparing the specklograms recorded during uniaxial tension. The shape of the tensile curves σ(ε) undergoes a significant change with a decreasing temperature due to the γ-α'-phase transformation induced by plastic deformation. The processing of the deformation curves of the steel samples made it possible to distinguish the following stages of strain hardening, i.e. the stage of linear hardening and jerky flow stage. A comparative analysis of the design diagrams (with the introduction of additional parameters of the Ludwigson equation) and experimental diagrams of tension of steel 12Kh18N9T for different temperatures is carried out. The analysis of local strains distributions showed that at the stage of linear work hardening, a mobile system of plastic strain localization centers is observed. The temperature dependence of the parameters of plastic deformation localization at the stages of linear work hardening has been established. Unlike the linear hardening, the jerky flow possesses the propagation of single plastic strain fronts that occur one after another through the sample due to the γ-α' phase transition and the Portevin-Le Chatelier effect. It was found that at the jerky flow stage, which is the final stage before the destruction of the sample, the centers of deformation localization do not merge, leading to the neck formation.


Sign in / Sign up

Export Citation Format

Share Document