scholarly journals Low Earth Orbit Space Environment Testing of Extreme Temperature 6H-SiC JFETs on the International Space Station

2011 ◽  
Vol 679-680 ◽  
pp. 579-582 ◽  
Author(s):  
Philip G. Neudeck ◽  
Norman F. Prokop ◽  
Lawrence C. Greer III ◽  
Liang Yu Chen ◽  
Michael J. Krasowski

This paper reports long-term electrical results from two 6H-SiC junction field effect transistors (JFETs) presently being tested in Low Earth Orbit (LEO) space environment on the outside of the International Space Station (ISS). The JFETs have demonstrated excellent functionality and stability through 4600 hours of LEO space deployment. Observed changes in measured device characteristics tracked changes in measured temperature, consistent with well-known JFET temperature-dependent device physics.

Subject Space stations. Significance As Washington returns its sights to the moon, it is reforming its policies regarding the International Space Station (ISS) with a view to jump-starting a 'low-earth orbit economy' in which private firms offer services to corporate clients, foreign governments and wealthy individuals. Impacts China's space station, due for completion in 2022, could draw third-country projects away from commercial US space stations. Governments are more promising clients for commercial crewed spaceflight than 'space tourists' are. Commercial stations and passenger spacecraft could make human spaceflight accessible to allied states. Spaceflight will remain politicised.


Author(s):  
Igor R. Ashurbeyli ◽  

Private sector involvement in the International Space Station (ISS) is becoming increasingly important as commercial organisations provide services and hardware to enhance the orbital operations of the Space Station which, in November 2020, marked two decades of continuous occupation. During the first Asgardia Space Science & Investment Conference, held in Germany in October 2019, a project to add a new commercially procured docking module to the ISS was announced as a key step to expanding the permanent human presence in low Earth orbit. Dr Igor Ashurbeyli, General Designer, provides a technical overview of the project and the industrial partnership arranged to deliver it.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (1) ◽  
pp. 25-34 ◽  
Author(s):  
David L. Edwards ◽  
Adrian P. Tighe ◽  
Marc Van Eesbeek ◽  
Yugo Kimoto ◽  
Kim K. de Groh

AbstractSpace environmental effects on materials are very severe and complex because of the synergistic interaction of orbital environments such as high-energy radiation particles, atomic oxygen, micrometeoroids, orbital debris, and ultraviolet irradiation interacting synergistically, along with thermal exposure. In addition, surface degradation associated with contamination can negatively impact optics performance. Materials flight experiments are critical to understanding the engineering performance of materials exposed to specific space environments. Likewise, the spacecraft designer must have an understanding of the specific environment in which a spacecraft will operate, enabling appropriate selection of materials to maximize engineering performance, increase mission lifetimes, and reduce risk. This article will present a methodology for assessing the engineering performance of materials baselined for a specific spacecraft or mission. In addition, an overview of the space environment, from low Earth orbit to interplanetary space, will be provided along with an overview on the effects of the space environment on materials performance. The majority of this article is devoted to materials flight experiments from the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), and from the National Aeronautics and Space Administration (NASA). Some of the experiments reviewed include ESA's Materials Exposure and Degradation Experiment on the International Space Station (ISS), JAXA's Micro-Particles Capturer and Space Environment Exposure Device experiments on the ISS Service Module and on the ISS Japanese Experiment Module Exposed Facility, and NASA's Long Duration Exposure Facility satellite and the Materials International Space Station Experiment series flown on the exterior of ISS.


2014 ◽  
Vol 14 (1) ◽  
pp. 67-77 ◽  
Author(s):  
H. Cottin ◽  
K. Saiagh ◽  
Y.Y. Guan ◽  
M. Cloix ◽  
D. Khalaf ◽  
...  

AbstractThe study of the evolution of organic matter subjected to space conditions, and more specifically to Solar photons in the vacuum ultraviolet range (120–200 nm) has been undertaken in low-Earth orbit since the 1990s, and implemented on various space platforms. This paper describes a photochemistry experiment called AMINO, conducted during 22 months between 2009 and 2011 on the EXPOSE-R ESA facility, outside the International Space Station. Samples with relevance to astrobiology (connected to comets, carbonaceous meteorites and micrometeorites, the atmosphere of Titan and RNA world hypothesis) have been selected and exposed to space environment. They have been analysed after return to the Earth. This paper is not discussing the results of the experiment, but rather gives a general overview of the project, the details of the hardware used, its configuration and recent developments to enable long-duration exposure of gaseous samples in tight closed cells enabling for the first time to derive quantitative results from gaseous phase samples exposed in space.


Sign in / Sign up

Export Citation Format

Share Document