Preparation and Photocatalytic Activity of N-TiO2/Sepiolite Nanocomposite

2011 ◽  
Vol 694 ◽  
pp. 85-90
Author(s):  
Dai Mei Chen ◽  
Hai Peng Ji ◽  
Jian Xin Wang ◽  
Jian Chen ◽  
Zheng Ming Wu ◽  
...  

To utilize visible light and separate of TiO2 nanoparticles more efficiently in photocatalytic reactions, nitrogen doped TiO2/sepiolite composites (N-TiO2/sep) with different nitrogen contents were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. XRD showed that anatase-TiO2 nanoparticles were loaded on the surface of sepiolite. XPS revealed that N atoms could incorporate into the lattice of anatase TiO2 substituting the sites of oxygen atoms. UV-vis spectroscopy showed that the visible light absorption of N-TiO2/sep samples decreased with the increase of calciantion temperature and increased with the increase of N content. The photocatalytic activities of obtained N-TiO2/sep samples were evaluated by methylene blue degradation under visible light irradiation. It was found that the N-TiO2/sep samples had the higher photocatalytic activity than that of TiO2/sep.

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2011 ◽  
Vol 391-392 ◽  
pp. 728-731 ◽  
Author(s):  
Wen Churng Lin ◽  
Wein Duo Yang

Different concentration of copper (II) doped TiO2 photocatalyst powders were synthesized through the sol-gel method and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET)-specific surface area, transmission electron microscopy (TEM), and Ultraviolet–Visible (UV-Vis) spectroscopy. Cu2+-doping in the TiO2 promotes the particle growth, decreases the specific surface areas of powders, extends the absorption to visible light regions, and exhibits the vis-photocatalytic activity for methylene blue (MB) degradation. Appropriate content of Cu2+-doping is an effective means to improve the photocatalytic activity of TiO2 for MB degradation under visible light irradiation.


2011 ◽  
Vol 383-390 ◽  
pp. 3188-3191
Author(s):  
Han Jie Huang ◽  
Wen Long She ◽  
Ling Wen Yang ◽  
Hai Peng Huang

A visible-light-responsive TiO2-xNx photocatalyst was prepared by a very simple method. Ammonia solution was used as nitrogen resource in this paper. The TiO2-xNx photocatalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), UV-Vis diffuse reflection spectra (DRS), and X-ray photoelectron spectroscopy (XPS). The ethylene was selected as a target pollutant under visible light excitation to evaluate the activity of this photocatalyst. The new prepared TiO2-xNx photocatalyst with strong photocatalytic activity under visible light irradiation was demonstrated in the experiment.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


2011 ◽  
Vol 117-119 ◽  
pp. 1088-1091
Author(s):  
Wen Churng Lin ◽  
Rui Liu ◽  
Wein Duo Yang

Iron-doped TiO2 photocatalyst powders were prepared by the sol–gel method and characterized by Brunauer–Emmett–Teller (BET)-specific surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Ultraviolet–Visible (UV-Vis) spectroscopy. Fe3+ doping in the TiO2 decreases the crystal grain size, increases the specific surface areas of powders, extends the absorption to visible light regions (400~500 nm), and lowers the photocatalytic activity for methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB in water was investigated as a function of the Fe3+ content in TiO2. It was found that under the irradiation of visible light, a small amount of Fe3+ dopant in TiO22 powders could obviously enhance the photocatalytic activity. When the Fe3+ content was in the range of 0.03–0.1 mol%, the photocatalytic activity of the samples was higher than that of undoped TiO2. Appropriate content of Fe-doping is an effective means to improve the photocatalytic activity of TiO2 for MB degradation under visible light irradiation.


2011 ◽  
Vol 284-286 ◽  
pp. 597-600
Author(s):  
Dai Mei Chen ◽  
Hai Peng Ji ◽  
Jian Xin Wang ◽  
Jian Chen ◽  
Xin Long Luan ◽  
...  

Nitrogen doped TiO2/sepiolite composite materials (N-TiO2/sep) with different nitrogen contents were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), respectively. XRD and SEM results showed that anatase-TiO2nanoparticles were distributed homogenously on the surface of sepiolite. XPS revealed that N atoms could incorporate into the lattice of anatase TiO2substituting the oxygen atoms sites of oxygen atoms.


Sign in / Sign up

Export Citation Format

Share Document