Process-Structure-Property Relationships for Magnesium Alloys

2012 ◽  
Vol 706-709 ◽  
pp. 1273-1278 ◽  
Author(s):  
Jonathan P. Weiler ◽  
J.T. Wood ◽  
I. Basu

Gravity step-casting experiments were performed to investigate process-structure-property relationships in three different die-cast magnesium alloys – AM60, AZ91 and AE44. The step-cast mold was instrumented to capture temperature profiles of the solidification of molten magnesium. This paper investigates the structure-property relationships of these magnesium alloys, specifically the dependence of the fracture properties upon the porosity that forms during the casting process. Sixteen tensile specimens were cut from the step-casting perpendicular to the solidification front, for each alloy examined. Correlations from X-ray tomography data were used to estimate the maximum area fraction of porosity from the average volumetric porosity in the specimens, assuming a typical size and spatial distribution of porosity. This relationship can be used in the absence of more accurate measure of porosity (i.e. serial sectioning, computed x-ray tomography). A failure model for die-cast alloys – which depends upon the strain-hardening coefficient and the maximum area fraction of porosity in the specimen – was used to predict fracture strains for each specimen. The experimental tensile elongation of each specimen was compared with predicted values. The resulting mechanical properties determined from these cast magnesium alloys will be used to develop process-structure-property relationships.

2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


2006 ◽  
Vol 15-17 ◽  
pp. 491-496 ◽  
Author(s):  
Tomasz Tański ◽  
Leszek Adam Dobrzański ◽  
Lubomír Čížek

In this paper is presented the structure and proprieties of the cast magnesium alloys as cast state and after heat treatment cooled with different cooling rate, depending on the cooling medium (furnace, water, air). For investigations samples in shape of 250x150x25 mm plates were used. The presented results concern X-ray qualitative and quantitative microanalysis as well as qualitative and quantitative X-ray diffraction method, tensile tests, hardness measurement. In the analysed alloys a structure of α %solid solution and fragile phase β (Mg17Al12) occurred mainly on grain borders as well as eutectic and phase AlMnFe, Mg2Si. Investigation are carried out for the reason of chemical composition influence and precipitation processes influence to the structure and mechanical properties of the magnesium cast alloys with different chemical composition in as cast alloys and after heat treatment.


2013 ◽  
pp. 305-313
Author(s):  
A.K. Dahle ◽  
S. Saunes ◽  
D.H. StJohn ◽  
H. Westengen

2016 ◽  
Vol 112 ◽  
pp. 402-409 ◽  
Author(s):  
Hua Qian Ang ◽  
Trevor B. Abbott ◽  
Suming Zhu ◽  
Chengfan Gu ◽  
Mark A. Easton

2014 ◽  
Vol 605 ◽  
pp. 237-243 ◽  
Author(s):  
P. Sharifi ◽  
Y. Fan ◽  
J.P. Weiler ◽  
J.T. Wood

Sign in / Sign up

Export Citation Format

Share Document