Microstructural and Mechanical Characterization of Friction Stir Processed 5086 Aluminum Alloy

2012 ◽  
Vol 710 ◽  
pp. 253-257 ◽  
Author(s):  
Shivanna Pradeep ◽  
Sumit Kumar Sharma ◽  
Vivek Pancholi

In the present investigation friction stir processing (FSP) is carried out by single and multipass FSP on a 5086 aluminum alloy to modify microstructure and mechanical properties. The processing is carried out at constant rotation speed of 1025 rpm and at a traverse speed of 30 mm/min. Inhomogeneous microstructural distribution was observed across the processed zone. EBSD analysis has been done to evaluate the microstructure. Overlapping passes is showing same grain size as in single pass FSPed material. Material processed using multi pass FSP at 30 mm/min is showing higher mechanical strength as compared to base material. The bulk material produced due to multipass seems to be good for superplastic forming applications.

2014 ◽  
Vol 902 ◽  
pp. 18-23
Author(s):  
S. Pradeep ◽  
Vivek Pancholi

In the present investigation friction stir processing (FSP) is carried out using multipass FSP on a 5086 aluminum alloy to modify microstructure and mechanical properties. Two processing conditions P1 and P2 were used, P1 is carried out at constant rotation speed of 1025 rpm and at a traverse speed of 50 mm/min, P2 is carried out at constant rotation speed of 720 rpm and at a traverse speed of 155 mm/min. Inhomogeneous microstructural distribution was observed across the processed zone. EBSD analysis has been done to evaluate the microstructure. Overlapping passes is showing same grain size in the FSPed material. Material processed using P2 processing condition is showing maximum superplastic ductility. The bulk material produced due to multipass FSP seems to be good for superplastic forming applications.


2013 ◽  
Vol 753-755 ◽  
pp. 431-434 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

In recent years friction stir welding process has received a great deal of attention from the transport industry. During the process, heat generation and material stirring induce significant microstructural alteration in the base material, affecting the properties of the welded assembly. In this paper the influence of process parameters, namely rotating speed and welding speed, on mechanical properties of AA2024-T3 friction stir butt welds is experimentally investigated. An increase of the yield stress has been found decreasing the heat input, while an opposite variation was measured for the elongation.


2012 ◽  
Vol 602-604 ◽  
pp. 608-611
Author(s):  
Di Qiu He ◽  
Rui Lin Lai ◽  
Shao Hua Xu ◽  
Kun Yu Yang ◽  
Shao Yong Ye ◽  
...  

In this study, Cu-Cr-Zr alloy joints are successfully fabricated by friction stir welding (FSW). Defect-free weld are produced on 12mm thick Cu-Cr-Zr alloy plate useing a non-consumable tool with a specially designed and shoulder with a constant rotation speed and a fixed traverse speed. The effect of friction stir welding (FSW) on the microstructure and mechanical properties of Cu-Cr-Zr alloy joints are investigated in details: The joints showed the presence of various zones such as nugget zone (NZ) and thermo-mechanically affected zone (TMAZ) and base metal (BM), the microhardness and the tensile strength of welded joints are lower than that of the base material.


2018 ◽  
Vol 8 (1) ◽  
pp. 2493-2498 ◽  
Author(s):  
A. W. El-Morsy ◽  
M. Ghanem ◽  
H. Bahaitham

In this work, the effects of rotational and traverse speeds on the 1.5 mm butt joint performance of friction stir welded 2024-T4 aluminum alloy sheets have been investigated. Five rotational speeds ranging from 560 to 1800 rpm and five traverse speeds ranging from 11 to 45 mm/min have been employed. The characterization of microstructure and the mechanical properties (tensile, microhardness, and bending) of the welded sheets have been studied. The results reveal that by varying the welding parameters, almost sound joints and high performance welded joints can be successfully produced at the rotational speeds of 900 rpm and 700 rpm and the traverse speed of 35 mm/min. The maximum welding performance of joints is found to be 86.3% with 900 rpm rotational speed and 35 mm/min traverse speed. The microhardness values along the cross-section of the joints show a dramatic drop in the stir zone where the lowest value reached is about 63% of the base metal due to the softening of the welded zone caused by the heat input during joining.


Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1937 ◽  
Author(s):  
Tomasz Machniewicz ◽  
Przemysław Nosal ◽  
Adam Korbel ◽  
Marek Hebda

The paper describes the influence of the friction stir welding travel speed on the mechanical properties of the butt joints of copper plates. The results of static and fatigue tests of the base material (Cu-ETP R220) and welded specimens produced at various travel speeds were compared, considering a loading applied both parallel and perpendicularly to the rolling direction of the plates. The mechanical properties of the FSW joints were evaluated with respect to parameters of plates’ material in the delivery state and after recrystallisation annealing. The strength parameters of friction stir welding joints were compared with the data on tungsten inert gas welded joints of copper plates available in the literature. The results of microhardness tests and fractographic analysis of tested joints are also presented. Based on the above test results, it was shown that although in the whole range of considered traverse speeds (from 40 to 80 mm/min), comparable properties were obtained for FSW copper joints in terms of their visual and microstructural evaluation, their static and especially fatigue parameters were different, most apparent in the nine-fold greater observed average fatigue life. The fatigue tests turned out to be more sensitive criteria for evaluation of the FSW joints’ qualities.


2012 ◽  
Vol 186 ◽  
pp. 331-334
Author(s):  
Mateusz Kopyściański ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research characterizes the changes in microstructure that occur in friction stir welded extrusions of a novel 7042 aluminum alloy. Due to the presence of scandium the base material preserved the deformation microstructure with elongated grains and fairly high dislocation density. The temperature increase with simultaneous severe plastic deformation occurring during friction stir welding induced significant changes in the microstructure within the weld and its vicinity. The weld center (stir zone) was composed of fine equiaxed grains with residual dislocations and a modest density of small precipitates compared to the neighbouring thermomechanically and heat affected zones where the density of small precipitates was much higher.


2009 ◽  
Vol 25 (01) ◽  
pp. 21-26
Author(s):  
Pankaj Biswas ◽  
N. R. Mandal

Friction stir welding, a comparatively new joining technique, is mainly used for welding aluminum alloys. In the present work, an attempt has been made to study the effect of weld parameters of friction stir welding of marine grade 5083 aluminum alloy. Several test runs were conducted to assess the effects of tool rotating speed and tool traverse speed on the microstructure and mechanical properties of the welded joint. It was observed that the tool traverse speed has a significant effect on the end properties of the welded joint. Grain refinement was observed in the thermomechanically affected zone (TMAZ), which led to improved mechanical properties of the welded joint. However, an increase in welding speed keeping rotational speed constant led to deterioration of mechanical properties. The study strongly indicates a possibility of achieving a superior welded joint in marine grade 5083 aluminum alloy with adequate selection of process parameters.


Sign in / Sign up

Export Citation Format

Share Document