In Situ Neutron Diffraction Measurements of the Deformation Behavior in High Manganese Steels

2013 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Mihyun Kang ◽  
Wan Chuck Woo ◽  
Vyacheslav Em ◽  
Young Kook Lee ◽  
Baek Seok Seong

Deformation behavior of high Mn TWIP (twinning induced plasticity) steels was observed using neutron diffraction. Two kinds of specimens were prepared; 0 and 2 wt% of Al TWIP steels. The lattice strains and peak widths of hkl grains were measured under tensile loading. The results provide an insight into the influence of the Al contents on the deformation behavior associated with the microstructure changes in TWIP steels.

2010 ◽  
Vol 638-642 ◽  
pp. 3134-3139 ◽  
Author(s):  
Burkhard Wietbrock ◽  
M. Bambach ◽  
S. Seuren ◽  
G. Hirt

In this work a hot forming strategy, consisting of forging and hot rolling, to homogenize casted blocks of high-manganese steels with 0.3 % carbon and 22 % manganese is introduced. The resulting distribution of carbon and manganese is evaluated by microprobe scans. The micro-segregation of manganese could be reduced from 7 weight percent to 2. To create the obtained hot forming strategy hot compression tests have been carried out. The deformation behavior has been characterized for two steels with 22 % manganese and between 0.3 and 0.7 % carbon content in the temperature range between 700 and 1200°C and strain rates between 0.1 and 10 s-1.


2019 ◽  
Vol 50 (12) ◽  
pp. 5760-5766 ◽  
Author(s):  
Madhumanti Bhattacharyya ◽  
Yves Brechet ◽  
Gary R. Purdy ◽  
Hatem S. Zurob

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Matías Bordone ◽  
Juan Perez-Ipiña ◽  
Raúl Bolmaro ◽  
Alfredo Artigas ◽  
Alberto Monsalve

This article is focused on the mechanical behavior and its relationship with the microstructural changes observed in two high-manganese steels presenting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP), namely Steel B and Steel C, respectively. Chemical compositions were similar in manganese, but carbon content of Steel B approximately doubles Steel C, which directly impacted on the stacking fault energy (SFE), microstructure and mechanical response of each alloy. Characterization of as-cast condition by optical microscope revealed a fully austenitic microstructure in Steel B and a mixed microstructure in Steel C consisting of austenite grains and thermal-induced (εt) martensite platelets. Same phases were observed after the thermo-mechanical treatment and tensile tests, corroborated by means of X-Ray Diffraction (XRD), which confirms no phase transformation in Steel B and TRIP effect in Steel C, due to the strain-induced γFCC→εHCP transformation that results in an increase in the ε-martensite volume fraction. Higher values of ultimate tensile strength, yield stress, ductility and impact toughness were obtained for Steel B. Significant microstructural changes were revealed in tensile specimens as a consequence of the operating hardening mechanisms. Scanning Electron Microscopy (SEM) observations on the tensile and impact test specimens showed differences in fracture micro-mechanisms.


2018 ◽  
Vol 63 (2) ◽  
pp. 491-499
Author(s):  
Benjamin Wittig ◽  
Manuela Zinke ◽  
Sven Jüttner ◽  
Daniel Keil

Sign in / Sign up

Export Citation Format

Share Document