Inter-Relationship among Skin Pass Reduction, 3D and 2D Roughness Parameters and the Stampability/Paintability of Cold Rolled Steel Sheets for the Automotive Industry: A Preliminary Analysis

2014 ◽  
Vol 783-786 ◽  
pp. 1039-1045 ◽  
Author(s):  
Eduardo Nunes ◽  
Antonio Fabiano de Oliveira ◽  
Thiago Sekeres ◽  
Christian Wichern ◽  
Ronald Lesley Plaut

The aim of this research work is to study the inter-relationship, under controlled industrial conditions, among skin pass reductions, surface topography (characterized by 2D and 3D) roughness parameters, stampability and painted surface finish quality for automotive steel sheet stampings.Different surface textures obtained from cold rolling finishing have been evaluated in terms of paintability tests (rating and spectral curve) and tentatively related to roughness parameters (2D and 3D) obtained from the cold finished sheets. Some relevant tendencies have been established amongst these parameters.The results presented here are in accordance with other recently published research showing that there is a clear relationship between these parameters, and that further detailed studies are needed.

2020 ◽  
Vol 10 (5) ◽  
pp. 1591 ◽  
Author(s):  
Christian Dahmen ◽  
Carmen Constantinescu

This article presents a holistic methodology for planning, optimization and integration of exoskeletons for human-centered workplaces, with a focus on the automotive industry. Parts of current and future challenges in this industry (i.e., need of flexible manufacturing but as well having demographic change) are the motivation for this article. This challenges should be transformed in positive effectiveness by integrating of exoskeletons regarding this article. Already published research work from authors are combined in a form of summary, to get all relevant knowledge, and especially results, in a coherent and final context. This article gives interested newcomers, as well as experienced users, planners and researchers, in exoskeleton technology an overview and guideline of all relevant parts: from absolute basics beginning until operative usage. After fixing the motivation with resulting three relevant research questions, an introduction to the exoskeleton technology and to the current challenges in planning and optimizing the ergonomics and efficiency in manufacturing are given. A first preselection method (called ExoMatch) is presented to find the most suitable exoskeleton for workplacesm by filtering and matching all the important analyzed attributes and characteristics under consideration to all relevant aspects from environments. The next section treats results regarding an analysis of influencing factors by integrating exoskeletons in manufacturing. In particular, ergonomic-related and production-process-related (especially time-management) influences identified and researched in already published works are discussed. The next important step is to present a roadmap as a guideline for integration exoskeleton. This article gives relevant knowledge, methodologies and guidelines for optimized integrating exoskeleton for human-centered workplaces, under consideration of ergonomics- and process-related influences, in a coherent context, as a result and summary from several already published research work.


2015 ◽  
Vol 808 ◽  
pp. 75-79 ◽  
Author(s):  
Gábor Béres ◽  
József Danyi ◽  
Ferenc Végvári

Clinching is a mechanical cold forming method to join two or more overlapping sheets without using of rivet. This technology is already in use for production of aluminium and steel sheet car body panels. This process is carried out without heat effect on the material structure. Thus the clinching is one of the technologies which may replace traditional processes as resistance spot welding or frictional spot welding. The clinching technology has been well known many years ago, but only during last decade gets more increased interest especially in automotive industry. This paper presents the results of experimental research work in field of clinching of different (high and soft) strength steel sheets developed for automotive industry.


2018 ◽  
Vol 24 (8) ◽  
pp. 1288-1295 ◽  
Author(s):  
Thiemo Valentin Fieger ◽  
Maximilian Ferdinand Sattler ◽  
Gerd Witt

Purpose This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding. Design/methodology/approach A novel approach for substituting conventional cold rolled metal sheets with SLM metal sheets, made of 316L and 18-Ni 300, is presented. The characteristics of the interaction of wrought and SLM materials are described, and joining benchmark parameters are presented and compared to known existing joining results. Finally, the joints are assessed in line with automotive specifications. This research also addresses the importance of joining technologies for the implementation of SLM as a full-fledged manufacturing technology for the automotive industry. Findings New parameter ranges for laser beam welding of SLM steels are defined. Research limitations/implications This research is limited to the examined steels and the used machines, parameters and equipment. Practical implications The presented benchmark parameters are expected to be useful for designers, product developers and machine operators. Originality/value Little knowledge is available about the behavior of SLM materials and their suitability for assembly processes. Novel information about SLM steels and their interaction with conventionally produced steel sheets is presented.


Author(s):  
V Satheeshkumar ◽  
R Ganesh Narayanan

The main aim of this research work is to study the influence of adhesive properties on the formability of adhesive-bonded steel sheets. The adhesive properties were varied by having two different adhesives, epoxy based and acrylic based, and by changing the hardener to resin ratios. The deep drawing quality cold rolled steel and stainless steel (SS 316L) sheets were used as base materials. The epoxy and acrylic adhesives show improved elongation with increase in hardener to resin ratio. This is because of changeover of resin-rich formulation to hardener-rich formulation, making the sample more ductile. The adhesive-bonded blanks show improved elongation as compared to double sheets, which is due to the presence of adhesive delaying the onset of necking. With increase in hardener to resin ratio of both the adhesives, the elongation of individual sheets has improved. This is due to the improvement in elongation of adhesives with increase in hardener to resin ratio. The strain hardening exponent ( n) of adhesive-bonded blanks has improved with increase in hardener to resin ratio in all the regions of deformation. The limit strain of deep drawing quality and SS 316L sheets constituting adhesive-bonded blanks shows improvement with increase in hardener to resin ratio. The adhesive-bonded blanks with interface bonding exhibit better limit strain as compared to the case without interface bonding.


2005 ◽  
Vol 105 ◽  
pp. 371-378 ◽  
Author(s):  
G. Vincent ◽  
C. Counhaye ◽  
Claude Esling

This work deals with early results obtained in numerical simulation of the skin-pass of zinc coated steel sheets. First, the streamline model and its adaptation to the case of the temper rolling of coated steel sheets are detailed. Second, the influence of various parameters of the rolling process on the strain and stress fields in the sheet is numerically calculated.


2006 ◽  
Vol 306-308 ◽  
pp. 899-904
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for automobile body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS301L and STS304L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


Sign in / Sign up

Export Citation Format

Share Document