Magnetic and Mössbauer Studies on Mixed-Metal Cyano-Bridged Compounds GunM1.5-n[Fe(CN)6]·xH2O(M=Ni, Gu)

2014 ◽  
Vol 789 ◽  
pp. 419-423
Author(s):  
Qing Lin ◽  
Xin Long Dong ◽  
Yun He ◽  
Jian Mei Xu ◽  
Rui Jun Wang

Mixed-metal cyano-bridged compounds GunM1.5-n[Fe (CN)6]·xH2O(M=Ni, Gu) have been prepared by co-precipitation. The magnetic results show that the compound Cu0.75Ni0.75[Fe (CN)6]·xH2O is ferromagnetic, undergoes a paramagnetic to the ferromagnetic transition temperature at 21.77 K. The paramagnetic curie temperature θ, residual magnetization Mr, and coercive field Hcare different from bimetallic Prussian Blue analogues Ni3[Fe (CN)6]2·xH2O and Cu3[Fe (CN)6]2· xH2O. As to Cu3[Fe (CN)6]2·xH2O, the magnetic susceptibilities follow the Curie-Weiss law and the Weiss paramagnetic Curie temperature is 19.1 K. The Mossbauer spectrum at room temperature reveals a doublet with the isomer shift parameter (-0.03 mm/s) and quadrupole splitting (QS= 1.09 mm/s). As the sample was cooled down to 16K, the magnetic splitting phenomenon was detected in the compound.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3449
Author(s):  
Ireneusz Stefaniuk ◽  
Werner Obermayr ◽  
Volodymyr D. Popovych ◽  
Bogumił Cieniek ◽  
Iwona Rogalska

In this paper, we show a simple method of producing ferromagnetic materials with a Curie temperature above room temperature. The electron paramagnetic resonance (EPR) spectra of Cd1−xCrxTe (0.002 < x < 0.08) were measured with a dependence on temperature (82 K < T < 381 K). Obtained EPR lines were fitted to a Lorentz-shaped curve. The temperature dependencies of the parameters of the EPR lines, such as the peak-to-peak linewidth (Hpp), the intensity (A), as well as the resonance field (Hr), were studied. Ferromagnetism was noticed in samples at high temperatures (near room temperature). For a sample with a nominal concentration of chrome of x = 0.05, a very strong intrinsic magnetic field is observed. The value of the effective gyromagnetic factor for this sample is ge = 30 at T = 240 K. An increase of chrome concentration above x = 0.05 reduces the ferromagnetic properties considerably. Analysis of the temperature dependencies of the integral intensity of EPR spectra was carried out using the Curie–Weiss law and the paramagnetic Curie temperature was obtained.


2020 ◽  
Vol 74 (11) ◽  
pp. 866-870
Author(s):  
Lewis C. H. Maddock ◽  
Alan Kennedy ◽  
Eva Hevia

While fluoroaryl fragments are ubiquitous in many pharmaceuticals, the deprotonation of fluoroarenes using organolithium bases constitutes an important challenge in polar organometallic chemistry. This has been widely attributed to the low stability of the in situ generated aryl lithium intermediates that even at –78 °C can undergo unwanted side reactions. Herein, pairing lithium amide LiHMDS (HMDS = N{SiMe3}2) with FeII(HMDS)2 enables the selective deprotonation at room temperature of pentafluorobenzene and 1,3,5-trifluorobenzene via the mixed-metal base [(dioxane)LiFe(HMDS)3] (1) (dioxane = 1,4-dioxane). Structural elucidation of the organometallic intermediates [(dioxane)Li(HMDS)2Fe(ArF)] (ArF = C6F5, 2; 1,3,5-F3-C6H2, 3) prior electrophilic interception demonstrates that these deprotonations are actually ferrations, with Fe occupying the position previously filled by a hydrogen atom. Notwithstanding, the presence of lithium is essential for the reactions to take place as Fe II (HMDS)2 on its own is completely inert towards the metallation of these substrates. Interestingly 2 and 3 are thermally stable and they do not undergo benzyne formation via LiF elimination.


2000 ◽  
Vol 658 ◽  
Author(s):  
Dong Li ◽  
M. A. Subramanian

ABSTRACTAcceptor and Donor codoped BaTiO3 and Ba1−xSrxTiO3 are prepared. For Ba1−xLaxTi1−xFexO3,BaTiO3 remains as tetragonal phase up to about 5mol% LaFeO3. For x ≥0.06, the structure changes to cubic at room temperature. The phase change shifts the Curie temperature to lower value and increases the tunability at room temperature. Doping of other acceptor (Al, Cr) and donor (Sm, Gd, Dy) ions has the same effect although with varying levels of tuning. BaTiO3: 4%LaFeO3 has the highest tunability among the studied systems, which is even higher than Ba0.6Sr0.4TiO3. Co-doping of (La, Fe) and (La, Al) in Ba1−xSrxTiO3 also lowers the Curie temperature and increases the tunability of high Ba content samples at cryogenic temperature.


2018 ◽  
Vol 10 (45) ◽  
pp. 39032-39039 ◽  
Author(s):  
Zhou Jiang ◽  
Peng Wang ◽  
Jianpei Xing ◽  
Xue Jiang ◽  
Jijun Zhao

2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


Sign in / Sign up

Export Citation Format

Share Document