Simulation of Low Frequency Electromagnetic DC Casting

2014 ◽  
Vol 790-791 ◽  
pp. 390-395 ◽  
Author(s):  
Nejc Kosnik ◽  
Robert Vertnik ◽  
Božidar Šarler

A comprehensive multiphysics model has been developed to describe the effect of the low frequency electromagnetic field (LFEM) [1, on solidification in the hot-top Direct-Chill (DC) casting [ of round aluminium alloy billets. The volume averaged equations and the rigid solid phase assumption are assumed for fluid flow and heat transfer [. The electromagnetic induction equation for the field imposed by the coil is solved using the diffuse approximate method (DAM), structured in axial symmetry with Gaussian weight function, 6 polynomial basis and 9 nodded domains. The heat, mass, and momentum transfer equations are solved in primitive variables by meshless [ method using 5 nodded domains of influence and 5 scaled multiquadrics radial basis functions, using collocation. Explicit time stepping is used. Pressure-velocity coupling is performed by the fractional step method. The effects of intensity and frequency of the LFEM [ on the velocity and temperature fields is investigated. A comparison of the calculated results with different LFEM field process variables with that of the conventional hot-top DC casting process indicates that the velocity patterns, the temperature profiles, and the shape of the sump could be modified remarkably.

2016 ◽  
Vol 877 ◽  
pp. 84-89
Author(s):  
Yu Bo Zuo ◽  
Qing Feng Zhu ◽  
Lei Li ◽  
Guang Ming Xu ◽  
Jian Zhong Cui

A low frequency electromagnetic field was introduced into the direct chill (DC) casting process and the ingots of Al-Cu alloy were prepared to study the macrosegregation behaviour of the ingots under the influence of the electromagnetic field. The experimental results showed that there is an obvious positive segregation near to the surface and a negative segregation in the centre area of the ingot. Cu shows the highest segregation tendency among the main elements of Cu, Mg and Mn. Grain refiner element Ti shows a segregation trend opposite to that of Cu. With the application of electromagnetic field, the negative centreline segregation in the centre area of the ingot was evidently reduced although it didn’t show significant effect on the segregation near to the ingot surface. A significant grain refinement was also achieved with the application of electromagnetic field. The mechanism of the reduction of macrosegregation with electromagnetic field was also analyzed in the present work.


2011 ◽  
Vol 295-297 ◽  
pp. 1705-1708
Author(s):  
Dan Dan Chen ◽  
Hai Tao Zhang ◽  
Xiang Jie Wang ◽  
Jian Zhong Cui

The effects of the low frequency electromagnetic field on the macrosegregation of the 7075 aluminum ingots were investigated. The 7075 aluminum ingots with the diameter of 200 mm were prepared by the conventional direct chill casting and the low frequency electromagnetic field casting (LFEC) processes, respectively. The temperature during casting at steady state was measured, and the mushy region was observed from the temperature contour. The concentrations of the alloying elements were measured by the spectrograph. It was found that the transition region was broadened, but the mushy zone became narrower with presence of the low frequency electromagnetic field. The centerline macrosegregation of the ingots was alleviated by the low frequency electromagnetic casting process.


2010 ◽  
Vol 654-656 ◽  
pp. 783-786 ◽  
Author(s):  
Arvin Prasad ◽  
Ian F. Bainbridge

The process of direct chill (DC) casting of aluminium and magnesium alloys is regarded as a mature technology. The thrust of more recent work to understand and upgrade the technology has been centred on developing models of the process, the most advanced of which (e.g., Alsim and Calcasoft) have been used to examine what may be considered macro-features of the process (macro-segregation, hot cracking, etc.). These models, being macroscopic, rarely elaborate on the role of mould-wall heat transfer in the DC casting process. As part of the work on DC casting being conducted at CAST, for the investigation of small scale features of the process (e.g. heat extraction through the mould wall), a 2D finite Difference model of the process near the mould-wall region has been developed. The basic features of the model are described and initial results outlined.In particular, the effect of mould-wall heat transfer on the solid shell formed during the steady state regime of DC casting will be presented.


2015 ◽  
Vol 817 ◽  
pp. 48-54 ◽  
Author(s):  
Hai Jun Wang ◽  
Jun Xu ◽  
Zhi Feng Zhang ◽  
Bo Liang ◽  
Ming Wei Gao

A new coupling stirring technology was proposed and used to prepare direct chill (DC) ingots. Ingots of 7075 alloy were produced by a process of normal direct chill (NDC) casting and coupling-stirring direct chill (CDC) casting, respectively. The effect of the technology on the microstructures, composition segregation and mechanical properties of the ingots was investigated. The results showed that the temperature variation in the CDC casting process was more uniform than that in the NDC casting process. The grain of the CDC ingots was finer and more spherical than the grain of NDC ingots. The grain size at the edge, 1/2 radius, and center position in CDC ingot decrease by 28%, 22%, and 24% comparing with the grain size of the corresponding positions of NDC ingot, respectively. The billets with higher performance and lower macro-segregation were obtained in case of CDC. The flow stresses and the difference in different positions of DC ingots measured at Gleeble-1500D thermo-mechanical simulator decreased obviously when the coupling stirring technology is used in the casting process.


2011 ◽  
Vol 690 ◽  
pp. 137-140 ◽  
Author(s):  
Yu Bo Zuo ◽  
Bo Jiang ◽  
Zhong Yun Fan

A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process has been developed for production of high quality ingots and billets of light alloys. In the MC-DC casting process, intensive melt shearing provided by a newly developed rotor-stator unit is used to control the solidification process during the DC casting with a conventional DC caster. Experimental results of DC casting of Al- and Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce light alloy billets with significantly refined microstructure and substantially reduced cast defects. The effect of intensive melt shearing on grain refinement has been mainly attributed to the enhanced heterogeneous nucleation on well dispersed oxides occurring naturally in the alloy melt.


Author(s):  
Mainul Hasan ◽  
Latifa Begum

In this study, first a 3-D thermal model is developed for an open top, vertical direct chill (DC) casting process of rolling slabs (ingots) by taking into account the casting speed in the form of slag flow in the thermal connective-diffusion equation. The mushy region solidification characteristics of the process are accounted for through the implementation of the enthalpy porosity technique. The thermal model is later extended to a 3-D CFD model to account for the coupled turbulent heat transfer and solidification aspect of the process. Both models simulate an industrial-sized, hot-top type vertical Direct Chill (DC) slab caster for high strength aluminum alloy AA-7050. A staggered control volume based finite-difference scheme is used to solve the modeled equations and the associated boundary conditions. In the CFD model, the turbulent aspects of flow and solidification heat transfer are modeled using a low Reynolds number version of the k–ε eddy viscosity approach. Computed results for the steady-state phase of the casting process are presented for four casting speeds varying from 60 to 180 mm/min for a fixed inlet melt superheat of 32°C. Simulation results of the velocity and temperature fields and heat fluxes along the caster surface are presented for the CFD model and the shell thickness and sump depth are compared between the CFD and thermal models.


2011 ◽  
Vol 189-193 ◽  
pp. 3795-3798
Author(s):  
Xiang Jie Wang ◽  
Jian Zhong Cui ◽  
Hai Tao Zhang ◽  
Hui Xue Jiang ◽  
Gao Song Wang

Surface segregation layer are frequently encountered during aluminium alloy direct chill casting process, and the removal of the surface segregation layer before further processing of the ingot decreases the ingot yield. In this work, the low frequency electromagnetic field was applied to study the effects of low frequency electromagnetic field on segregation layer during the direct chill casting process. The results show that under the effect of the low frequency electromagnetic field, the surface quality of ingot is improved, the structure of the ingot is refined, and the thickness of segregation layer is decreased.


2001 ◽  
Author(s):  
Christopher J. Vreeman ◽  
J. David Schloz ◽  
Matthew John M. Krane

Abstract A continuum mixture model of the direct chill casting process is compared to experimental results from industrial scale aluminum billets. The model, which includes the transport of free-floating solid particles, can simulate the effect of a grain refiner on macrosegregation and fluid flow. It is applied to an Al - 6 wt% Cu alloy and the effect of grain refiner on macrosegregation, sump profile, and temperature fields are presented. Two 45 cm diameter billets were cast under production conditions with and without grain refiner. Temperature and composition measurements and sump profiles are compared to the numerical results. The comparison shows excellent agreement for the grain refined case. It is believed that an incorrect assumption about the grain structure prevents good agreement in the non-grain refined billet.


2010 ◽  
Vol 97-101 ◽  
pp. 1012-1015
Author(s):  
Xiang Jie Wang ◽  
Jian Zhong Cui ◽  
Qing Feng Zhu ◽  
Zhi Hao Zhao

Hot tear is one of the main defects during the aluminium casting process, and it usually occurs during solidification. In this work, the low frequency electromagnetic field was applied to study the effects of low frequency electromagnetic field on hot tear during the conventional hot-top casting process. The results show that under the effect of the low frequency electromagnetic field, the structure of the ingot is refined, the flow direction is changed, and the depth of the sump becomes shallow. All these factors can decrease the hot tear susceptibility.


Sign in / Sign up

Export Citation Format

Share Document