Research on Tool Wear of PCD Micro End Mill in Machining of ZrO2 Ceramics

2014 ◽  
Vol 800-801 ◽  
pp. 20-25 ◽  
Author(s):  
Shu Long Wang ◽  
Liang Li ◽  
Ning He ◽  
Rong Bian ◽  
Zhong Bo Zhan ◽  
...  

This paper presents a study on the tool wear of micro PCD end mill when machining ZrO2 ceramics. The cutting tool used was a self-designed PCD micro end mill with 1 mm in diameter and single flute. Experiments were conducted on a self-developed micro-milling machine tool. The tool wear characters and progress during the groove milling has been observed. The cutting force and machining accuracy of the grooves also have been studied. Based on the results, it is found that tool wear is mainly on the bottom surface; the cutting force increases with the progress of tool wear; tool wear also affect the width of machined grooves due to the decrease of effective tool diameter.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 568 ◽  
Author(s):  
Zhiqiang Liang ◽  
Peng Gao ◽  
Xibin Wang ◽  
Shidi Li ◽  
Tianfeng Zhou ◽  
...  

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.


2016 ◽  
Vol 10 (3) ◽  
pp. 372-380 ◽  
Author(s):  
Akira Hosokawa ◽  
◽  
Naoya Hirose ◽  
Takashi Ueda ◽  
Tomohiro Koyano ◽  
...  

Side milling tests of CFRP (carbon fiber reinforced plastics) containing thermosetting resin are carried out by TiAlN/AlCrN-coated, H2-free DLC (diamond-like carbon)-coated, and CVD diamond-coated carbide end mills without coolant. Two types of end mills having different helix angles of 30° and 60° are used. The film thickness and surface smoothness are varied for the DLC-coated end mills. The cutting characteristics are evaluated by tool wear and surface integrity (i.e., 3D profiles of the machined surface, generation of fluffing, delamination, and pull-out of the carbon fibers). The cutting force and tool flank temperature are also examined for the two types of CFRP composites and the helix angle of the end mill. “Inclination milling,”in which the end mill is tilted so that the resultant cutting force acts parallel to the work surface, is proposed as a novel technique to be used with a high-helix angle end mill. This unique approach enables the reduction of tool wear and improves the surface integrity of machined CFRP surfaces.


2016 ◽  
Vol 1136 ◽  
pp. 143-148 ◽  
Author(s):  
Zhi Qiang Liang ◽  
Li Ping Ma ◽  
Xi Bin Wang ◽  
Wen Xiang Zhao ◽  
Tian Feng Zhou ◽  
...  

This study is carried out to investigate the influence of pulsed magnetic treatment on wear of carbide micro-end-mill. To analyze the friction behavior of micro-end-mill with workpiece, the special micro-end-mill with a chisel is fabricated and used in micro-milling experiments. A paramagnetic material aluminum alloy is employed as workpiece material. The experimental results indicated 17% and 27 % reductions in maximum minor flank wear width and chisel edge wear area of micro-end-mill after pulsed magnetic treatment, respectively. However, the surface roughness and morphology of machined aluminum alloy have no obvious changes with or without pulsed magnetic treatment. Consequently, the reduction of tool wear during milling aluminum alloy can be mainly attributed to the improvement of mechanical properties of carbide tool materials after pulsed magnetic treatment.


2013 ◽  
Vol 567 ◽  
pp. 113-117 ◽  
Author(s):  
Can Zhao ◽  
C.R. Tang ◽  
S. Wan

This paper applies the information fusion technology to tool monitoring. As one of the most important processing factor, the cutting tool and the tool wear directly influence size precision. Signals of cutting force and vibration are measured with multi-sensor. By using multi-sensor the drawbacks can be overcome, the multi-sensor information fusion mentioned in manufacture stands for extracting kinds of information from different sensors (especially for cutting force and vibration signal in this paper), making best use of all resources,according to certain criterion to judge the spatial and time redundancy , to make the system more comprehensive. Two data fusion methods, which are BP Neural Network and Wavelet Neural Network for predicting tool wear, and are debated. By the hybrid of BP and wavelet based neural network the cutting tool status inspection system is built so that the forecast of tool wear can be achieved. The results show experimentally two of these presented methods effectively implement tool wear monitoring and predicting.


2020 ◽  
Vol 2020 (1) ◽  
pp. 3784-3793
Author(s):  
Jaroslav Kovalcik ◽  
Pavel Zeman ◽  
Frantisek Holesovsky ◽  
Jan Madl ◽  
Ludmila Kucerova

Sign in / Sign up

Export Citation Format

Share Document