Optimisation of tool angles and the relation between tool path and cutting force in high-speed milling with micro-end-mill

Author(s):  
Zhe Qin ◽  
Chengyong Wang ◽  
Yisong Lin ◽  
Yinning Hu
Author(s):  
Zhiyang Yao ◽  
Ajay Joneja

High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration in HSM is to limit cutting force variations, and one way to do so is to reduce cutter-workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a function of the tool path requires repeated, expensive computations. This paper develops algorithms for a discretized computational model to make CWE computations for arbitrary shaped parts.


2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


2010 ◽  
Vol 33 ◽  
pp. 437-440
Author(s):  
Min Fu ◽  
Chun Wei Chen

In this paper, on the aim of control the fluctuation of cutting force, five kind of commonly used tool paths which were used to milling curved surface were selected to study the optical cutting tool path of high speed milling al-alloy, the results showed that in order to make the fluctuation of cutting force smallest, the tool path which had the more even line spacing along the Machining surface should be chosen according to the characteristic of the Machining surface. In order to minimize the cutting force, the direction with the biggest surface curvature should be chosen, and the direction with the smallest change rate of the surface curvature should be chosen in order to minimize the fluctuations of cutting force.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2007 ◽  
Vol 129 (6) ◽  
pp. 1069-1079 ◽  
Author(s):  
M. Sharif Uddin ◽  
Soichi Ibaraki ◽  
Atsushi Matsubara ◽  
Susumu Nishida ◽  
Yoshiaki Kakino

In two-dimensional (2D) free-form contour machining by using a straight (flat) end mill, conventional contour parallel paths offer varying cutting engagement with workpiece, which inevitably causes the variation in cutting loads on the tool, resulting in geometric inaccuracy of the machined workpiece surface. This paper presents an algorithm to generate a new offset tool path, such that the cutting engagement is regulated at a desired level over the finishing path. The key idea of the proposed algorithm is that the semi-finish path, the path prior to the finishing path, is modified such that the workpiece surface generated by the semi-finish path gives the desired engagement angle over the finishing path. The expectation with the proposed algorithm is that by regulating the cutting engagement angle along the tool path trajectory, the cutting force can be controlled at any desirable value, which will potentially reduce variation of tool deflection, thus improving geometric accuracy of machined workpiece. In this study, two case studies for 2D contiguous end milling operations with a straight end mill are shown to demonstrate the capability of the proposed algorithm for tool path modification to regulate the cutting engagement. Machining results obtained in both case studies reveal far reduced variation of cutting force, and thus, the improved geometric accuracy of the machined workpiece contour.


Sign in / Sign up

Export Citation Format

Share Document