Development of MTA/HAp Biomaterials for Use in Endodontics

2014 ◽  
Vol 805 ◽  
pp. 7-11
Author(s):  
C.M.B. Barros ◽  
D.C.R.E. Dantas ◽  
L.B.C. Fontes ◽  
A.C.F.M. Costa ◽  
K.M.S. Viana

This work aims to conduct a study of development and characterization of a new endodontic biociment, the MTA/HAp. To this was used MTA Angelus®and a HAp synthesized in the laboratory in the proportions by weight 99% MTA/1% HAp (BIOC 1) and 95% MTA/5% HAp (BIOC 5), where the hydroxyapatite was added in order to introduce MTA to the characteristic of osteoconduction. The tests for the characterization of new cement were: X-ray diffraction, scanning electron microscopy and radiographic appearance. The results showed that the new developed biociments were obtained efficiently, since they showed the same crystalline phases of its starting materials (mineral trioxide aggregate and hydroxyapatite), with a morphology consisting of agglomerates of homogeneous distribution of irregular size and shape particles pre-sintered spherical and radiopacity feasible to be used in endodontics.Keywords:biomaterial,sealer,mineraltrioxideaggregate,hydroxyapatite.

2012 ◽  
Vol 727-728 ◽  
pp. 1381-1386 ◽  
Author(s):  
Criseuda Maria Benício Barros ◽  
Sara Verusca de Oliveira ◽  
Janaina Benício Marques ◽  
Kaline Melo de Souto Viana ◽  
Ana Cristina Figueiredo de Melo Costa

This research was incorporated the hydroxyapatite in a mineral trioxide aggregate sealer, with the aim of studying this influence in the structure, morphology and radiopacity of the cement to obtain osteoconductive material. The samples were characterized by X ray diffraction (XRD), spectrometry fluorescence X ray (EDX), spectroscopy transform infrared Fourier (FTIR), scanning electron microscopy (SEM) and radiographic appearance. Through the results obtained by XRD for the new sealer observed the formation of phases HAp and MTA evidenced by the presence of phases: CaO, SiO2and Bi2O verified also by EDX. Through FTIR was observed the presence of absorption bands related to links Ca-O, Si-O and Bi-O present in MTA and P-O present in HAp. The morphology visualized by SEM consists of irregular agglomerates with the formation of pre-sintered particles. The sample MTA/HAp3% presented radiopacity viable for their application as endodontic cement.


2010 ◽  
Vol 660-661 ◽  
pp. 302-307
Author(s):  
P.B. Santos ◽  
S.C. Silva ◽  
Rubens Nunes de Faria Jr. ◽  
Hidetoshi Takiishi

The first goal of this work involved the study of the effect of variables the HDDR processing, such as: the added pressure of H2 in the system, the time of heat treatment and recombination of Pr12Fe65.9Co16B6Nb0.1 alloy with the aim of improving the magnetic properties like the magnetic properties of the Pr14Fe63.9Co16B6Nb0.1 alloy (Br= 865mT and iHc= 790mT). The second aim of the work involved the characterization of HDDR powders that were analyzed by X-ray diffraction for identification and quantification of crystalline phases. These materials were analyzed by scanning electron microscopy (SEM).


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2022 ◽  
Vol 321 ◽  
pp. 126326
Author(s):  
Gladis Aparecida Galindo Reisemberger de Souza ◽  
Ramón Sigifredo Cortés Paredes ◽  
Frieda Saicla Barros ◽  
Gustavo Bavaresco Sucharski ◽  
Sebastião Ribeiro Junior ◽  
...  

Author(s):  
Aniek Setiya Budiatin ◽  
Samirah ◽  
Maria Apriliani Gani ◽  
Wenny Putri Nilamsari ◽  
Chrismawan Ardianto ◽  
...  

Bovine bone is a considerable source for the production of hydroxyapatite. The recent study reported a novel method to extract hydroxyapatite from bovine bone without producing hazardous residue. The bovine bones were cut and boiled in the opened chamber followed by boiling in pressurized tank. The bones were then soaked into 95% ethanol. Calcination was then conducted in 800°C, 900°C and 1,000°C, for 2 hours. The result was then grinded and sieved. The powder then was characterized using Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to measure the purity of hydroxyapatite. It is concluded that the hydroxyapatite derived from this process showed 100% purity, resulting 35.34 ± 0.39% w/w from the wet bone weight and 72.3% w/w from the dried weight. The present extraction method has been proven to yield high amount of pure hydroxyapatite as well as reducing the use of hazardous reagent.


2007 ◽  
Vol 546-549 ◽  
pp. 1699-1702
Author(s):  
Xi Ying Zhou ◽  
Liang He ◽  
Yan Hui Liu

Al-Cu-Fe quasicrystals powder was used to prepare the thin films on the surface of the A3 steel by the means of DMD-450 vacuum evaporation equipment. The thin films with different characterization were obtained through different parameters. The microstructures of the thin films were analyzed by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Additionally, the nano-hardness and the modulus of the films are tested by MTS and Neophot micro-hardness meter. The results showed that the modulus of the films was about 160GPa. Nano hardness of the films was about 7.5 Gpa. The films consisted of CuAl2, AlCu3. The thickness and the micro-hardness of the films are improved. In same way, with the increase of the electric current, the thickness and the hardness of the films are also improved. Along with increase of the time and the electric current, the wear behavior of the films was improved. To some extent, the microstructure of films contained the quasicrystal phase of Al65Cu20Fe15.


Sign in / Sign up

Export Citation Format

Share Document