Practical Results to the Long Term Behaviour of Fibre Reinforced Polymers under Constant Load

2015 ◽  
Vol 825-826 ◽  
pp. 952-959
Author(s):  
Richard Zemann

The long term behaviour of fibre reinforced polymers is important for many uses. In this publication experiments are described in which three different carbon fibre epoxy compound specimens, with different fibre orientations, are compared. For a comparison to metallic materials, as well as to get a benchmark, steel and aluminium specimens are also tested. All specimens are loaded with constant loads; the investigated load types are bending and torsion. In the experiments two different scenarios are investigated. The first scenario compares the creep behaviour under uniform start deflections and the second scenario compares the creep behaviour under uniform load conditions.

2012 ◽  
Vol 54 (11-12) ◽  
pp. 756-761 ◽  
Author(s):  
Maik Gude ◽  
Werner Hufenbach ◽  
Ilja Koch ◽  
Roman Koschichow

2016 ◽  
Vol 53 (3) ◽  
pp. 125-143
Author(s):  
S. González ◽  
M. González ◽  
J. Dominguez ◽  
F. Lasagni

2021 ◽  
pp. 228947
Author(s):  
Gokhan Gurbuz ◽  
Caglar Bayik ◽  
Saygin Abdikan ◽  
Kurtulus Sedar Gormus ◽  
Senol Hakan Kutoglu

Nanoscale ◽  
2021 ◽  
Author(s):  
Srijan Acharya ◽  
Satyam Suwas ◽  
Kaushik Chatterjee

Metallic materials are widely used to prepare implants for both short-term and long-term use in the human body. The performance of these implants is greatly influenced by their surface characteristics,...


2020 ◽  
Vol 47 (7) ◽  
pp. 856-864
Author(s):  
Guohui Cao ◽  
Wang Zhang ◽  
Jiaxing Hu ◽  
Xirong Peng

A long-term load test performed for 470 days on two two-span prestressed concrete (PC) continuous box girders is reported in this paper. Load types were selected as the test variates, and structural responses such as support reactions, deflections, and concrete strains were monitored. Simultaneously, affiliated experiments such as material strength, creep, and shrinkage tests were conducted to investigate the time-dependent performances of the materials. Data obtained from these tests showed that deflections, strains, and support reactions develop rapidly in the beginning and stabilize afterward; the reactions of mid- and end-supports decline and rise over time, respectively. Time-dependent patterns of deflections and support reactions were analyzed on the basis of an effective modulus method, and a practical calculation method for long-term deflections considering reaction redistributions was proposed. The effects of the service environment on the performance of PC girders were evaluated through an incremental analysis method.


2015 ◽  
Vol 825-826 ◽  
pp. 757-762 ◽  
Author(s):  
Emanuel Richter ◽  
Axel Spickenheuer ◽  
Lars Bittrich ◽  
Kai Uhlig ◽  
Gert Heinrich

A load dependent and curvilinear respectively variable-axial fibre design can notably enhance the strength and stiffness of lightweight components compared to fibre reinforced structures made of common multiaxial fibre textiles. At the Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) special design strategies are in the focus of current studies. Two currently developed components made of carbon fibre reinforced plastics, a lightweight three-legged stool and a lightweight recurve bow riser, are described within this paper.


Sign in / Sign up

Export Citation Format

Share Document