Vibration Control of HSM of Thin-Wall Titanium Alloy Components Based on Finite Element Simulation

2016 ◽  
Vol 836-837 ◽  
pp. 304-309 ◽  
Author(s):  
Kang Zhao ◽  
Hong Hua Su ◽  
Lin Jiang He ◽  
Ying Zhi Liu

During high-speed machining, the vibration will result in poor workpiece surface and damage the cutting tool as well as the machine tool. It will limit the productivity and lower the quality of thin-wall titanium alloy components. Moreover, vibration occurrence is strongly affected by the dynamic response of the whole system, particularly the stiffness of workpiece-fixture system. Improper fixture layout is prone to generate vibration, especially for the flexible workpiece. Hence, it’s necessary to suppress the vibration and improve the fixture design. In this work, a finite element model of the workpiece-fixture system is built. Based on this model, the laws of the natural frequency and vibration modals under different fixturing methods are obtained, which can be used to refine fixture design. With several additional auxiliary supports, the stiffness of the workpiece-fixture system is improved and the result showed that, the natural frequencies of thin-wall titanium alloy components can be improved to a level which is too high to be reached by tool’s excitation. The result of this study is helpful to design the optimum fixture scheme of thin-wall titanium alloy components.

2010 ◽  
Vol 139-141 ◽  
pp. 1101-1104
Author(s):  
Yong Yang ◽  
Yu Ling Wang ◽  
Chang He Li

Though a lot of research works have been done, some key technologies of finite element simulation have not been resolved completely. A detailed finite element model of high speed orthogonal cutting of titanium alloy Ti6Al4V is developed. Several mechanics models of cutting process, such as material constitutive model, chip separation model and chip damage model, are implemented to improve finite element simulation accuracy. The chip shape and cutting force agree well with experimental results, which show the finite element model developed in this study is reasonable. Using this finite element model, chip formation process of titanium alloy Ti6Al4V is simulated. Results indicate that the material between the shear bands is only weakly deformed, and the deformation is stronger on the tool side of the chip. This work will be a base for process parameter optimization, tool’s optimization selection and design during high speed cutting of difficult-to-cut titanium alloy.


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


Author(s):  
D M Sirkett ◽  
B J Hicks ◽  
C Berry ◽  
G Mullineux ◽  
A J Medland

In response to recent European Union (EU) regulations on packaging waste, the packaging industry requires greater fundamental understanding of the machine-material interactions that take place during packaging operations. Such an understanding is necessary to handle thinner lighter-weight materials, specify the material properties required for successful processing and design right-first-time machinery. The folding carton industry, in particular, has been affected by the new legislation and needs to realize the potential of computational tools for simulating the behaviour of packaging materials and generating the necessary understanding. This paper describes the creation and validation of a detailed finite element model of a carton during a common packaging operation. The model is applied here to address the problem of carton buckling. The carton was modelled using a linear elastic material definition with non-linear crease behaviour. Air inrush suction, which is believed to cause buckling, was quantified experimentally and incorporated using contact damping interactions. The results of the simulation are validated against high-speed video of carton production. The model successfully predicts the pattern of deformation of the carton during buckling and its increasing magnitude with production rate. The model can be applied to study the effects of variation in material properties, pack properties and machine settings. Such studies will improve responsiveness to change and will ultimately allow end-users to use thinner, lighter-weight materials in accordance with the EU regulations.


2012 ◽  
Vol 215-216 ◽  
pp. 1105-1110 ◽  
Author(s):  
Xiong Guo ◽  
Lv Long Zou ◽  
Bing Lu ◽  
Shi Liang Zhang ◽  
Xing Ren Su ◽  
...  

The connection performance of the large taper, multi-thread, variable pitch of screw threaded casing is researched by 3D finite element simulation on ANSYS Workbench. The 3D finite element model is created precisely. The stress distribution on the teeth of three kind variable pitch of screw threaded structure is studied by using the static structure of the contact analysis module. Contrasting stress distribution of the variable pitch of screw with of the equal pitch of screw under the same working condition, it is validated that design principle for the variable pitch of screw connection is correct. The influence of changes in the amount of variable pitch of screw to the whole stress distribution on teeth is discussed. The results show that the force distribution on the teeth of the variable pitch of screw connection is more uniform than equal pitch of screw, and will improve the overall carrying capacity. This study has its practical value to improve the connective performance of the threaded casing and enhance the product quality of threaded casing.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


Author(s):  
H. A. Nied

A finite element model of an elevated temperature upset welding process was developed to simulate the process and to study the role and sensitivity of the major process parameters. Particular attention was focused on the deformation characteristics by studying the displacement and stress fields generated for the purpose of obtaining a better understanding of this solid-state welding process. The paper describes the finite element formulation, the experiments used to validate the modeling, and a selected application for upset welding of a titanium alloy.


2013 ◽  
Vol 683 ◽  
pp. 548-551 ◽  
Author(s):  
Jian Wu ◽  
Qiang Liu ◽  
You Shan Wang

Tires are a key part of the vehicle, mainly constituted by rubber materials. Extrusion is one of the important processes of rubber part, which is critical to the quality of the tire. Therefore, it is necessary to study the extrusion process of rubber material. In this paper, a finite element model of the rubber extrusion process was developed by using the Euler-Lagrange coupling method based on the research on rubber constitutive model. Results indicated that: extrusion expansion phenomenon existed in rubber extrusion process, which was consistent with the reality; rubber extrusion process parameters can be optimized by finite element method, and the quality of tire was also improved.


2010 ◽  
Vol 29-32 ◽  
pp. 360-364
Author(s):  
Yong Yang ◽  
Yu Ling Wang ◽  
Chang He Li

A three-dimensional finite element model of helix double-edge cutting is developed to study the ending milling process of titanium alloy Ti6Al4V. Several mechanics models of milling process, such as material constitutive model, friction model and heat transfer model, are implemented to improve finite element simulating accuracy. A milling force experiment is carried out, and a good agreement between simulation and experimental value is achieved, which proved that the finite element model presented in this paper is correct. Using this finite element model, chip formation and cutting temperature are simulated and analyzed. This work will be a base for process parameter optimization, tool’s optimization selection and design during high speed milling of difficult-to-cut titanium alloy.


2013 ◽  
Vol 395-396 ◽  
pp. 941-944
Author(s):  
Qi Gang Han ◽  
Qiang Zhang ◽  
Ming Zhe Li ◽  
Shi Zhong Su ◽  
Wen Ke Yang ◽  
...  

To remove the disadvantage of conventional stretch forming machine (CSFM), a flexible stretch forming machine (FSFM) has been developed by authors recently. Based on finite element simulation and experiments, the advantages of FSFM have been detailed discussed. Our results indicated that the discrete multi-gripping jaws can swing and rotate in any direction automatically, which can solve the wasteful production of CSFM by increase the rate of materials utilization and close-fitting dies. Furthermore, the value of springback and thickness gradient in the parts formed by discrete multi-gripping jaws is smaller compare with that of integrally gripping jaws, which can help to achieve a high quality of stretch forming parts. A series of double-curved sheet panels have been formed by FSFM easily and used in the cabinet covers of high-speed train and the Dongdaemun Design Park building successfully. This work has a strong value in enhance the way to flexible and reproducible stretch forming technology.


Sign in / Sign up

Export Citation Format

Share Document