Phase Constitution and Martensitic Transformation Behavior of Au-51Ti-18Co Biomedical Shape Memory Alloy Heat-Treated at 1173K to 1373K

2016 ◽  
Vol 879 ◽  
pp. 256-261 ◽  
Author(s):  
Taywin Buasri ◽  
Hyun Bo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

Phase constitution and martensitic transformation behavior were investigated for a Au–51Ti–18Co alloy heat-treated at 1173 K to 1373 K for 3.6 ks. The Au–51Ti–18Co alloy was fabricated by Ar arc-melting technique and subsequently by hot-forging at 1423 K for 10.8 ks. X-ray diffraction analysis revealed that B2 parent phase, B19 martensite phase and AuTi3 simultaneously appeared regardless of the heat-treatment temperatures. By increasing the heat-treatment temperature, the volume fraction of AuTi3 was slightly reduced. Besides, the lattice transformation strain which was calculated from the precisely-determined lattice parameters was evaluated to be 7 % in the Au–51Ti–18Co alloy in all the heat-treated conditions. This value is comparable to that of NiTi practical alloys. From differential scanning calorimetry (DSC) analysis, reverse martensitic transformation temperature was slightly increased with the heat-treatment temperature. From the lattice transformation strain point of views, the Au–51Ti–18Co has a large potential for novel biomedical shape memory alloy.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2539 ◽  
Author(s):  
Peiyou Li ◽  
Yongshan Wang ◽  
Fanying Meng ◽  
Le Cao ◽  
Zhirong He

The martensitic transformation and superelasticity of Ti49Ni51 shape memory alloy heat-treatment at different temperatures were investigated. The experimental results show that the microstructures of as-cast and heat-treated (723 K) Ni-rich Ti49Ni51 samples prepared by rapidly-solidified technology are composed of B2 TiNi phase, and Ti3Ni4 and Ti2Ni phases; the microstructures of heat-treated Ti49Ni51 samples at 773 and 823 K are composed of B2 TiNi phase, and of B2 TiNi and Ti2Ni phases, respectively. The martensitic transformation of as-cast Ti49Ni51 alloy is three-stage, A→R→M1 and R→M2 transformation during cooling, and two-stage, M→R→A transformation during heating. The transformations of the heat-treated Ti49Ni51 samples at 723 and 823 K are the A↔R↔M/A↔M transformation during cooling/heating, respectively. For the heat-treated alloy at 773 K, the transformations are the A→R/M→R→A during cooling/heating, respectively. For the heat-treated alloy at 773 K, only a small thermal hysteresis is suitable for sensor devices. The stable σmax values of 723 and 773 K heat-treated samples with a large Wd value exhibit high safety in application. The 773 and 823 K heat-treated samples have large stable strain–energy densities, and are a good superelastic alloy. The experimental data obtained provide a valuable reference for the industrial application of rapidly-solidified casting and heat-treated Ti49Ni51 alloy.


2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


2007 ◽  
pp. 1493-1496
Author(s):  
Kazuhiro Kitamura ◽  
Yutaka Sawada ◽  
Toshio Kuchida ◽  
Tadashi Inaba ◽  
Masataka Tokuda ◽  
...  

2004 ◽  
Vol 842 ◽  
Author(s):  
Tomonari Inamura ◽  
Yohei Takahashi ◽  
Hideki Hosoda ◽  
Kenji Wakashima ◽  
Takeshi Nagase ◽  
...  

ABSTRACTMartensitic transformation behavior of Ti50Ni40Pt10 (TiNiPt) melt-spun ribbons were investigated where the heat treatment temperature was systematically changed from 473K to 773K. A hot-forged bulk TiNiPt material with the similar chemical composition was also tested as a comparison. θ-2θ X-ray diffraction analysis and transmission electron microscopy observation revealed that the as-spun ribbons were fully crystallized. The apparent phases of as-spun ribbons at room temperature are both B19 martensite and B2 parent phase instead of B2 single phase for the hot-forged bulk material. No precipitates were found in as-spun and heat-treated ribbons. It was revealed by differential scanning calorimetry that all the specimens exhibit one-step transformation. The martensitic transformation temperatures of the TiNiPt as-spun ribbons are 100K higher than those of the hot-forged bulk material, and the martensitic transformation temperature decreases with increasing heat treatment temperature.


Sign in / Sign up

Export Citation Format

Share Document