Local Surface Phase Stability during Cyclic Oxidation Process

2016 ◽  
Vol 879 ◽  
pp. 855-860
Author(s):  
Mattias Calmunger ◽  
Robert Eriksson ◽  
Guo Cai Chai ◽  
Sten Johansson ◽  
Jan Högberg ◽  
...  

Surface properties are essential for many engineering material ́s design issues, such as fatigue and corrosion performances. Austenitic stainless steels used in high-temperature applications, as for instance components in biomass-fired power plants, need sufficient corrosion resistance. At temperatures above 600 °C and in water vapor environment, Cr-vaporization will create Cr-depletion, causing a local change in chemical composition. This local change in chemical composition leads to phase transformation in some austenitic stainless steels. This paper reports the surface properties regarding the local phase transformation during thermal cycling in water vapor environment. Three commercial austenitic stainless steels are investigated, AISI 304, AISI 316L and Sandvik SanicroTM 28. The thermal cycling was performed up to 650 °C in a 15 mol.% water vapor environment. AISI 304 shows local surface phase transformation related to martensitic transformation due to locally changed chemical composition and increase in the martensitic transformation temperature (Ms). However, the other two austenitic stainless steels don’t show this martensitic transformation. The phase transformation and oxidation is discussed using microstructural investigations methods such as x-ray diffraction (XRD), electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS).

2014 ◽  
Vol 595 ◽  
pp. 103-112 ◽  
Author(s):  
Richard K.C. Nkhoma ◽  
Charles W. Siyasiya ◽  
Waldo E. Stumpf

1989 ◽  
Vol 60 (10) ◽  
pp. 464-468 ◽  
Author(s):  
Ulrich Reichel ◽  
Brunhild Gabriel ◽  
Martin Kesten ◽  
Birgitt Meier ◽  
Winfried Dahl

2011 ◽  
Vol 473 ◽  
pp. 444-451
Author(s):  
A.H. van den Boogaard ◽  
J. Krauer ◽  
Pavel Hora

The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress triaxiality plays an important role also. The sensitivity to triaxiality is often investigated based on uniaxial compression and tensile tests. To validate the common formulation for triaxiality dependence of the martensitic transformation, a series of experiments is performed with the Twente biaxial tester for sheet material. A number of deformation directions are prescribed between plane strain and simple shear. Uniaxial tensile tests were performed at different temperatures to get a temperature corrected reference curve for the martensite–strain relation. The current results for typical stress states in sheet forming do not show the dependency on the triaxiality that is given in literature. This means that for sheet forming simulations, changes in stress state affects the martensitic transformation less than expected from tension–compression experiments.


2017 ◽  
Vol 23 (2) ◽  
pp. 111 ◽  
Author(s):  
Andrea Di Schino ◽  
Maria Richetta

<p>Even if relations predicting the mechanical properties on bars of austenitic stainless steels are already available, but no systematic works was carried out in order to predict mechanical properties in after cold rolling and annealing.   The tensile properties of a large number of cold rolled and annealed AISI 304 stainless steel are here correlated with their chemical composition and microstructure. Quantitative effects of various strengthening mechanisms such as grain size, d– ferrite content and solid solution strengthening by both interstitial and substitutional solutes are described. Interstitial solutes have by far the greatest strengthening effect and, among the substitutional solutes, the ferrite – stabilising elements have a greater effect than the austenite – stabilising elements. Regression equations are developed which predict with good accuracy the proof stress and tensile strength in AISI 304 stainless steels.</p>


DYNA ◽  
2015 ◽  
Vol 82 (189) ◽  
pp. 22-29
Author(s):  
Jose Luddey Marulanda-Arevalo ◽  
Saul Castañeda-Quintana ◽  
Francisco Javier Perez-Trujillo

ICOMAT ◽  
2013 ◽  
pp. 341-348 ◽  
Author(s):  
Stephanie Nanga ◽  
Andre Pineau ◽  
Benoît Tanguy ◽  
Loïc Nazé ◽  
Pierre-Olivier Santacreu

Sign in / Sign up

Export Citation Format

Share Document