Electronic Structures of Vacancy Defective Chiral (6,2) SiC Nanotubes

2017 ◽  
Vol 896 ◽  
pp. 3-8
Author(s):  
Ke Jian Li ◽  
Hong Xia Liu

Vacancy defects are common defects formed in the syntheses of silicon carbide nanotubes (SiCNTs) and seriously impact the electronic structures of the nanotubes. With first-principle calculations based on density functional theory (DFT), vacancy defective (6,2) SiCNTs are studied. Vacancies form a pair of fivefold and ninefold rings. Carbon vacancy introduces an occupied defect level near the top of the valence band and an unoccupied level in the conduction band. Three defect levels are found in the band gap of the SiCNT with a silicon vacancy. These results are helpful for investigations on SiCNT devices and sensors.

2016 ◽  
Vol 43 ◽  
pp. 23-28 ◽  
Author(s):  
Chun Ping Li ◽  
Ge Gao ◽  
Xin Chen

First-principle ultrasoft pseudo potential approach of the plane wave based on density functional theory (DFT) has been used for studying the electronic characterization and optical properties of ZnO and Fe, Co doped ZnO. The results show that the doping impurities change the lattice parameters a little, but bring more changes in the electronic structures. The band gaps are broadened by doping, and the Fermi level accesses to the conduction band which will lead the system to show the character of metallic properties. The dielectric function and absorption peaks are identified and the changes compared to pure ZnO are analyzed in detail.


2020 ◽  
Vol 557 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Husnu Koc ◽  
Selami Palaz ◽  
Sevket Simsek ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay

In the present paper, we have investigated the electronic structure of some sillenites - Bi12MO20 (M = Ti, Ge, and Si) compounds based on the density functional theory. The mechanical and optical properties of Bi12MO20 have also been computed. The second-order elastic constants have been calculated, and the other related quantities have also been estimated in the present work. The band gap trend in Bi12MO20 can be understood from the nature of their electronic structures. The obtained electronic band structure for all Bi12MO20 compounds is semiconductor in nature. Similar to other oxides, there is a pronounced hybridization of electronic states between M-site cations and anions in Bi12MO20. Based on the obtained electronic structures, we further calculate the frequency-dependent dielectric function and other optical functions.


2021 ◽  
Vol 9 (2) ◽  
pp. 71-75
Author(s):  
Akram H. Taha

Density functional theory (DFT) coupled with ) method are carried out to calculate the electronic structures of AgX (X; Br, Cl, and F). The effect of hybridizing between 4d orbital of Ag element and the p orbitals of the X in the valence band plays a very important role in the total density of states configuration. The electronic structure has been studied and all results were compared with the experimental and theoretical values. The importance of this work is that there is insufficient studies of silver halides corresponding the great importance of these compounds. Almost all the results were consistent with the previous studies mentioned here. We found the band gap of AgX to be 2.343 eV, 2.553 eV, and 1.677 eV for AgBr, AgCl, and AgF respectively which are in good agreement with the experimental results.      


2012 ◽  
Vol 736 ◽  
pp. 27-31
Author(s):  
Kulpreet Singh Virdi ◽  
K.C. Hari Kumar

Using first-principle calculations employing density functional theory (DFT) the stabilityof a (3, 3) carbon nanotube (CNT) intercalated with lithium atoms, with respect to their position aswell as Li/C ratio, is studied. On varying the distance of a lithium atom from the axis of the CNT in theradial direction, through the center of a graphitic hexagon, minimum of energy of the system occursat a distance of 3.8 °A from the axis. Keeping the distance of the lithium atom from the tube axis fixedat 3.8 °A, intercalation energy (E) was calculated while the number of lithium atoms is varied fromone (Li1C12, −0.511 eV) to six (Li6C12, −0.615 eV). It is found that the intercalation becomes morefavorable with the increase in number of lithium atoms intercalated and increase in the symmetryof the intercalated system. The maximum intercalation energy difference between successive lithiumatom additions lay within 0.1 eV.


2020 ◽  
Vol 2 (10) ◽  
pp. 4566-4580 ◽  
Author(s):  
Vipin Kumar ◽  
Debesh R. Roy

First principle calculations utilizing density functional theory were carried out to investigate electronic properties, transport and optical properties of penta-MP2 (M = Ni, Pd and Pt) monolayer compounds under applied uniaxial and biaxial tensile strains.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3759-3769
Author(s):  
Håkon Eidsvåg ◽  
Murugesan Rasukkannu ◽  
Dhayalan Velauthapillai ◽  
Ponniah Vajeeston

14 new MoS2 polymorphs were studied using first-principle calculations based on density functional theory. We found a new promising MoS2 candidate for photocatalytic and photovoltaic applications.


Sign in / Sign up

Export Citation Format

Share Document