Software Application of Material Structure Prediction

2017 ◽  
Vol 906 ◽  
pp. 88-94
Author(s):  
Y.E. Karyakin ◽  
I.Y. Karyakin ◽  
Svetlana V. Karyakina

The developed software application allows the user to model phase transformations under isothermal conditions for a specified steel grade at arbitrary tempering temperature. Architecture of the software application using scheme of the chart of distributed computation of simulation model kinematic parameters for reducing time expenditures during computer experiments. The recognition algorithm of raster images on the isothermal and thermokinetic diagrams has been proposed. The imaging algorithm of the material structure after heat treatment have been developed.

2020 ◽  
Vol 4 (3) ◽  
pp. 46
Author(s):  
Harry Esmonde

An iterative approach is taken to develop a fractal topology that can describe the material structure of phase changing materials. Transfer functions and frequency response functions based on fractional calculus are used to describe this topology and then applied to model phase transformations in liquid/solid transitions in physical processes. Three types of transformation are tested experimentally, whipping of cream (rheopexy), solidification of gelatine and melting of ethyl vinyl acetate (EVA). A liquid-type model is used throughout the cream whipping process while liquid and solid models are required for gelatine and EVA to capture the yield characteristic of these materials.


2019 ◽  
Vol 25 (S2) ◽  
pp. 168-169
Author(s):  
Matthew L. Gong ◽  
Brandon D. Miller ◽  
Ray R. Unocic ◽  
Khallid Hattar ◽  
Bryan Reed ◽  
...  

2001 ◽  
Vol 123 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Xu-Dong Li

Computer experiments were performed to investigate behavior of mesoscopic stress responses in a simulated polycrystalline material sample containing a fairly large number of constituent grains for a number of polycrystalline materials. Kro¨ner-Kneer structure-based model was adopted and refined to provide an efficacious numerical approach to local mesoscopic stresses. The approach is developed on a concept of average fields of grains for arbitrarily polygon-shaped grains. Three criteria were proposed for classifying speculated material structure weaknesses in all simulated material samples. It is found that material structure weaknesses can be well correlated by defined “Orientation-Geometry Factor” and “Relevance Parameter.” Not only grain-orientation but also grain geometry exerts strong influences on mesoscopic stress distribution, hence the distribution of material structure weaknesses in simulated polycrystalline material samples. Computer experiments lead to correlated relationships that links material structure weaknesses with local microstructure, and a database for discrimination of material structure weaknesses in the material samples. The homogenization of materials with locally anisotropic microstructure is also discussed.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


Author(s):  
J. Temple Black

The output of the ultramicrotomy process with its high strain levels is dependent upon the input, ie., the nature of the material being machined. Apart from the geometrical constraints offered by the rake and clearance faces of the tool, each material is free to deform in whatever manner necessary to satisfy its material structure and interatomic constraints. Noncrystalline materials appear to survive the process undamaged when observed in the TEM. As has been demonstrated however microtomed plastics do in fact suffer damage to the top and bottom surfaces of the section regardless of the sharpness of the cutting edge or the tool material. The energy required to seperate the section from the block is not easily propogated through the section because the material is amorphous in nature and has no preferred crystalline planes upon which defects can move large distances to relieve the applied stress. Thus, the cutting stresses are supported elastically in the internal or bulk and plastically in the surfaces. The elastic strain can be recovered while the plastic strain is not reversible and will remain in the section after cutting is complete.


1980 ◽  
Vol 23 (3) ◽  
pp. 630-645 ◽  
Author(s):  
Gerald Zimmermann ◽  
J.A. Scott Kelso ◽  
Larry Lander

High speed cinefluorography was used to track articulatory movements preceding and following full-mouth tooth extraction and alveoloplasty in two subjects. Films also were made of a control subject on two separate days. The purpose of the study was to determine the effects of dramatically altering the structural dimensions of the oral cavity on the kinematic parameters of speech. The results showed that the experimental subjects performed differently pre and postoperatively though the changes were in different directions for the two subjects. Differences in both means and variabilities of kinematic parameters were larger between days for the experimental (operated) subjects than for the control subject. The results for the Control subject also showed significant differences in the mean values of kinematic variables between days though these day-to-day differences could not account for the effects found pre- and postoperatively. The results of the kinematic analysis, particularly the finding that transition time was most stable over the experimental conditions for the operated subjects, are used to speculate about the coordination of normal speech.


2015 ◽  
Vol 9 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Carlota Torrents ◽  
Marta Castañer ◽  
Ferran Reverter ◽  
Gaspar Morey ◽  
Toni Jofre

2018 ◽  
Author(s):  
E Herdt ◽  
M Klon ◽  
M Schwarz ◽  
B Fay ◽  
E Haen

2020 ◽  
pp. 1-12
Author(s):  
Changxin Sun ◽  
Di Ma

In the research of intelligent sports vision systems, the stability and accuracy of vision system target recognition, the reasonable effectiveness of task assignment, and the advantages and disadvantages of path planning are the key factors for the vision system to successfully perform tasks. Aiming at the problem of target recognition errors caused by uneven brightness and mutations in sports competition, a dynamic template mechanism is proposed. In the target recognition algorithm, the correlation degree of data feature changes is fully considered, and the time control factor is introduced when using SVM for classification,At the same time, this study uses an unsupervised clustering method to design a classification strategy to achieve rapid target discrimination when the environmental brightness changes, which improves the accuracy of recognition. In addition, the Adaboost algorithm is selected as the machine learning method, and the algorithm is optimized from the aspects of fast feature selection and double threshold decision, which effectively improves the training time of the classifier. Finally, for complex human poses and partially occluded human targets, this paper proposes to express the entire human body through multiple parts. The experimental results show that this method can be used to detect sports players with multiple poses and partial occlusions in complex backgrounds and provides an effective technical means for detecting sports competition action characteristics in complex backgrounds.


Sign in / Sign up

Export Citation Format

Share Document