Servo Forging Technology and Mold Development of the Pulley of AISI-1010 Low Carbon Steel

2018 ◽  
Vol 917 ◽  
pp. 257-261
Author(s):  
Tung Sheng Yang ◽  
Chun Wang ◽  
Li Xiu Liu ◽  
Shuen Huei Yao

Aimed at AISI-1010 low carbon steel pulley components, a finite element method-based metal forming simulation software of DEFORM 3D was used to simulate and analyze the near net forging process for the low carbon steel pulley, and to design forging molds. This technology was used in the pulley tooth forging in conjunction with the servo press-based servo motion curve technology. First, the cold forging process of the pulley preform forging and the near net forging were simulated. Also, the applications of the pulse wave servo motion curve in the pulley tooth forging was simulated, which was compared with the traditional motion curve-based forging forming, where the comparisons focused on the maximum forming force and maximum equivalent stress. The results indicated that the maximum forming force and the maximum equivalent stress of the punch caused by the pulse wave servo motion curve was smaller than caused by the traditional motion curve.

Author(s):  
A.M. Dmitriev ◽  
N.V. Korobova

The quality of parts such as deep cylindrical cups made by cold forging from low-carbon steel and sintered billets from iron powder is compared. Technological processes from production of iron-based powder parts and press equipment used in mechanical engineering and in powder metallurgy are described. Cold forging of powder billets and billets from low-carbon steels is carried out on press specialized for extrusion with the creation of actively directed contact friction stresses between the deformable billet and the die. It is shown that cold extrusion of cup-type parts with actively directed contact friction stresses makes it possible to manufacture parts from iron-based powder with density equal to 98...99 % of the theoretical iron density. However parts from low-carbon steel have strength limit greater than that of powder parts. Powder cups do not have the anisotropy of properties typical for cups from low-carbon steels.


2013 ◽  
Vol 465-466 ◽  
pp. 1065-1069
Author(s):  
Mohd Azwir Azlan ◽  
Andy Anak Buja ◽  
Sia Chee Kiong ◽  
Nik Hisyamudin Muhd Nor ◽  
Jalil Azlis-Sani

This study is an approach to investigate the viable impacts of screw manufacturing. At the same time, choose the suitable material and selected manufacturing process of screw by considering environmental aspects without sacrificing the economic aspect. It is important to the organisation to improve the environmental aspect. Therefore in this study, the decision making was focused on economic aspects to produce the synergy results between economic and environmental impact. The parameters involved were types of material and manufacturing process of screw which using the available data of environmental and production volume. The two different manufacturing approaches being evaluated were machining and forging process. The types of material concerned for forging process encompassed low carbon steel, alloy steel stainless steel, and aluminium alloy. On the other hand, for machining process, the material being considered in screw manufacturing were cast iron, low carbon steel, alloy steel, stainless steel and aluminium alloy. The information of environmental impacts that generated from SolidWorks Sustainability tool and screw production cost were calculate using Manufacturing cost model, both information was used in Analytic Hierarchy Process (AHP) analysis to obtain local priority of economic and environmental impacts. Then, the ranking of both global and local priorities from economic impact and environmental impacts had enabled the determination of appropriate material used for those selected screw manufacturing process. As result, low carbon steel was chosen for forging process whereas cast iron was excelled in machining process, at the same time, stainless steel was not suggested to be used in both two processes.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950096
Author(s):  
XIANGYANG MAO ◽  
JIANYU SUN ◽  
HONGXING WANG ◽  
XIUMING ZHAO ◽  
ZHANGZHONG WANG

The punching severe deformation is a recently developed surface treatment that forms alloying by inducing a greater compressive equivalent stress field. Despite its proven utility, there has been little attention devoted to the accurate modeling of this process. In this work, a 3D-DEFORM finite element analysis was used to model the equivalent stress distribution induced by the punching process on a low-carbon steel surface. A majority of the controlling parameters of the process were taken into account. The effect of punching number, punching tip size, punching velocity and punching pressure on the equivalent stress distribution was evaluated. The results show that an equivalent stress distribution much higher than the conventional surface severe deformation can be obtained by optimizing the punching severe deformation process. The reported simulation results can successfully predict the punching severe deformation used to create an alloying layer on the surface of low-carbon steel.


2010 ◽  
Vol 44-47 ◽  
pp. 2733-2736
Author(s):  
Dao Chun Hu ◽  
Lei Wang

This paper analyzes the forming process methods of cam in CPU socket to control its open and close. The whole process is pierce, notch, the first forging forming, the second pierce(the second pilot hole), the second forging forming(sizing), impact forging forming, and trimming. The punch shape design of the first forging forming is simulated by finite element analysis. The optimized punch profile radius 0.50mm and punch size Φ10.60mm are available. Cold forging of precision progressive die is put forward. The second pierce pilot hole that newly designed is applied, which relief the deformation of pilot holes caused by severe metal flow. Compared with the traditional single operation dies, the precision progressive die based on cold forging process were proved through the practical production to be high economical efficiency, which could be the references for developing the cold forging process of producing the similar produsts.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Author(s):  
Natalia Gonçalves Torres ◽  
Vinícius Rodrigues ◽  
Edgar Mamiya

Sign in / Sign up

Export Citation Format

Share Document