Strengthening of Reinforced Concrete Beams by Carbon Fiber Composites

2018 ◽  
Vol 931 ◽  
pp. 379-384
Author(s):  
Yuri V. Ivanov ◽  
Yuri F. Rogatnev ◽  
Igor I. Ushakov

The paper considers the results of the experimental study of the reinforced concrete beams strengthened by carbon fiber reinforced plastics (the CFRP). Eight reinforced concrete beams of the 80x160 mm section and 1500 mm designed span have been manufactured and tested. The influence of the number of the CFRP layers (strengthening power) on bearing capacity and rigidity under the static loading of beams in the thirds of the span has been studied. The results obtained indicate the increase in bearing capacity of the reinforced beams from 24% up to 55% and the increase in rigidity by 45% for the commonly adopted limiting state, i.e. achieving ultimate deformations in concrete of the compressed zone). The paper underlines the need for using anchor devices in the form of U-shaped binders to ensure the efficiency of the given method of strengthening.

Author(s):  
I.S. Bondar ◽  
◽  
Al Dulaimi Salman Dawood Salman ◽  
D.T. Aldekeyeva ◽  
R.S. Imambaeva ◽  
...  

The article examines field studies of reinforced concrete beams, fracture schemes, and the nature of the formation, development of cracks in reinforced concrete elements. Modeling the stress-strain state of reinforced concrete beams in the ANSYS software and computational complex, comparing the results of field and numerical studies. A method of finite element modeling of beams reinforced with fiber plastics (carbon fiber reinforced plastics) is proposed. A comparison of fracturing schemes obtained as a result of numerical simulation is presented.


2014 ◽  
Vol 487 ◽  
pp. 500-503
Author(s):  
Dong Liang ◽  
Lu Chen ◽  
Jing Sun

The mechanism of using prestressed carbon fiber reinforced plastics (Pre-CFRP) sheet to strengthen reinforced concrete beams with anti-arch deflection method was proposed. And then the corresponding theoretical analysis was derived, and the effectiveness of this reinforcement method is verified by experiment in laboratory to improve the girders stiffness and cracking load.


2013 ◽  
Vol 756-759 ◽  
pp. 25-28 ◽  
Author(s):  
Chun Xia Li ◽  
Zhi Sheng Ding ◽  
Shi Lin Yan ◽  
Jun Ming Chen

Based on the experimental result of the flexure capability of reinforced concrete beams strengthened by carbon fiber sheets, the stress distribution changes only after steel yielding and carbon fiber sheets function better. However serious the extent of the damage is before strengthened, the tensile strain of main steel reaches about 1.6 times of the yield strain for the secondary grade of steel as failure happens. To satisfy the object reliability indicator, reliability is analyzed using the ratio of the steel strain at the balanced failure to the yield strain as variable to obtain its optimum value, which is coincide with the experimental result, and makes better consistency between calculated reliability indicator and object reliability indicator.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document