Leaching of Non-Ferrous Metals from Galvanic Sludges

2019 ◽  
Vol 946 ◽  
pp. 591-595 ◽  
Author(s):  
O.Yu. Makovskaya ◽  
K.S. Kostromin

The problem of processing slimes of galvanic production, formed as a result of neutralization of technological solutions and wastewater containing heavy non-ferrous metals is considered. At present, sludges are transported to disposal area and are not used in any way. Typically, such sludges contain significant amounts of chromium and nickel, which creates environmental hazard. Investigated sludge of Dimitrovgrad Automobile Units Plant (Russia) contains up to 6.6% Ni and up to 7,4% Cr. The hydrometallurgical process is proposed to treatment of these sludges. Solutions of sulfuric acid, ammoniaс chloride and Trilon B were used as lixiviants. It is shown that when using a solution of sulfuric acid with pH=1,5, extraction of up to 93,3% Cu, 70,2 Ni, 90,3 Zn is achieved.

2020 ◽  
Author(s):  
O.Yu. Makovskaya ◽  
K.S. Kostromin

The problem of processing galvanic sludges, formed as a result of neutralization of technological solutions and wastewater containing heavy non-ferrous metals is considered in this study. At present, sludges are transported to disposal area and are not used in any way. Typically, such sludges contain significant amounts of chromium and nickel, which creates environmental hazard. Investigated sludge contains up to 6,6% Ni and up to 7,4% Cr. The hydrometallurgical process to treatment of these sludges is carried out. Solutions of sulfuric acid and ammonia were used as lixiviants. It is shown that when using a solution of sulfuric acid with pH=1,5, extraction of up to 93,3% Cu, 70,2 Ni, 90,3 Zn is achieved. For selective nickel recovery sorption concentration by Lewatit TP207 is proposed. Keywords: Galvanic sludge, hydrometallurgy leaching, nickel, ion-exchange resin


2020 ◽  
Vol 989 ◽  
pp. 554-558
Author(s):  
Aleksandr Bulaev ◽  
Vitaliy Melamud

The goal of the present work was to develop hydrometallurgical method based on acid leaching, which makes it possible to perform selective extraction of non-ferrous metals from old flotation tailings. Leaching was performed with sulfuric acid solutions (from 0.5 to 10%) and distilled water. Leaching was carried out using percolators and bottle agitator. Percolators were loaded with 100 g of old tailings, and leaching was performed with 100 mL of acid solutions. Pulp density during agitation leaching (S: L) was 1: 5. Two samples of old flotation samples were studied. The first sample of flotation tailings contained 0.26% of copper, 0.22% of zinc, and 17.4% of iron; while the second sample contained 0.36% of copper, 0.23% of zinc, and 23.2% of iron. Percolation leaching made it possible to extract up to 43 and 47% of Cu and Zn from the first sample. Extraction rate was maximum during the leaching with 1 and 2.5% sulfuric acid solutions. During the agitation leaching, the maximum extraction rate was reached with a 2.5% sulfuric acid solution (52 and 54% Cu and Zn), but the leaching rate with all solutions and distilled water differed insignificantly. Percolation leaching made it possible to extract up to 54 and 37% of Cu and Zn from the second sample of tailings, while agitation leaching made it possible to extract up to 34 and 68% Cu and Zn, respectively. The rate of non-ferrous metals extraction from the second sample with water did not differ significantly from that of obtained in the experiments with sulfuric acid solutions. In all experiments, the increase in the H2SO4 concentration led to the increase in concentrations of iron ions in productive solutions, which impedes the extraction of non-ferrous metals from solutions. Thus, it was possible to reach selective leaching of non-ferrous metals and to obtain solutions with relatively low concentrations of iron ions.


2018 ◽  
Vol 284 ◽  
pp. 790-794 ◽  
Author(s):  
M.V. Boshnyak ◽  
A.R. Galimianov ◽  
O.B. Kolmachikhina

Recycling and storage of galvanic production sludges requires significant costs and they are strictly regulated by environmental documents. At the same time, the sludges contain a significant amount of non-ferrous metals, including nickel, which are preferable to extract. To evaluate the extracting nickel possibility from the sludges and selecting a method for their processing, it is necessary to study the chemical, phase, fractional material composition.


2019 ◽  
Vol 13 (2) ◽  
pp. 113-123
Author(s):  
Vladimir Golik ◽  
Vladimir Morkun ◽  
Natalia Morkun ◽  
Vitaliy Tron

Abstract The research deals with metal extraction from off-grade ores and concentration tailings. There are provided results of simulating parameters of reagent leaching of metals in the disintegrator according to the metal recovery ratio. The research substantiates the method of waste-free processing of chemically recovered ores. Recovery of metals into solution is the same both under multiple leaching of tailings or ore in the disintegrator and agitation leaching of tailings or ore previously activated in the disintegrator with leaching solutions. The time of agitation leaching is more by two orders of magnitude than that of the disintegrator processing. Recovery of metals into solution is most affected by the content of sodium chloride in the solution. Then, in decreasing order, go the content of sulfuric acid in the solution, the disintegrator rotor rpm and L:S ratio.


Sign in / Sign up

Export Citation Format

Share Document