Optimization of Wire Electrical Discharge Machining Parameters of Activated Carbon Reinforced Aluminium Composite

2020 ◽  
Vol 979 ◽  
pp. 3-9
Author(s):  
G. Ramanan ◽  
M.Madhu Kiran Reddy ◽  
V. Manishankar

The quality of machining through process parameters on the responses in wire electrical discharge machining (WEDM) is studied. This paper discusses the optimization of parameters of a process in WEDM machining with the application of the desirability approach on the basis of response surface methodology (RSM). Pulse on time, servo speed rate, discharge current, and pulse off time have been considered as influential factors. The established experimental data of AA7075 aluminium reinforced with 9% of activated carbon composite to analyze the process parameter effects on responses, like material removal rate (MRR) and surface roughness (SR). After machining multiple regression analysis is used to find the interaction among the process parameters is obtained. The optimal parameters were found using the desirability optimization methodologies as 10.43mm3/min and 3.32μm respectively. The performance of the optimization test confirmed that the proposed method in this study effectively improves the performance of the WEDM process.

Author(s):  
T Vijaya Babu ◽  
B Subbaratnam

WEDM (Wire Electrical discharge machining) is a nonconventional machining processes used in complicated shapes with high accuracy which are not possible with other conventional methods .Stainless steel 304 is used in present experimental work. Experiments are completed using Taguchi’s method with L9 orthogonal array .The aim of this work is to optimize the WEDM process parameters by considering input parameters are pulse on time , pulse off time ,peak current and wire feed and experiments are conducted with help of input parameters at three levels and response output parameters are MRR (Material removal Rate) and Surface Roughness (SR).Setting of parameters using by Taguchi’s method.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


Author(s):  
Neeraj Sharma ◽  
Tilak Raj ◽  
Kamal Kumar Jangra

NiTi is a shape memory alloy, mostly employed in cardiovascular stents, orthopedic implants, orthodontic wires, micro-electromechanical systems and so on. The effective and net shape machining of NiTi is very critical for excellent response of this material in medical and other applications. The present experimental work on wire electrical discharge machining process identifies the influence of process parameters that affect the cutting rate, dimensional shift and surface roughness while machining of porous nickel–titanium (Ni40Ti60) alloy. Porous Ni40Ti60 alloy was produced in-house using powder metallurgy technique. Response surface methodology–based central composite rotatable design has been used for the planning of experiments on wire electrical discharge machining. Empirical relations have been developed between the process parameters (pulse on-time, pulse off-time, servo voltage and peak current) and response variables. Desirability approach has been used for optimizing the three response variables simultaneously. Confirmation experiments were also performed at the optimized settings and reflect a close agreement between the predicted and experimental values (percentage error varies from −6.13% to +6.85%). Using wire electrical discharge machining, NiTi alloy can be machined easily and successfully in single-cutting operation, but after the first cut in wire electrical discharge machining, a surface projection appears on work surface which is the unmachined material on work surface.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 454 ◽  
Author(s):  
Arkadeb Mukhopadhyay ◽  
Tapan Barman ◽  
Prasanta Sahoo ◽  
J. Davim

To achieve enhanced surface characteristics in wire electrical discharge machining (WEDM), the present work reports the use of an artificial neural network (ANN) combined with a genetic algorithm (GA) for the correlation and optimization of WEDM process parameters. The parameters considered are the discharge current, voltage, pulse-on time, and pulse-off time, while the response is fractal dimension. The usefulness of fractal dimension to characterize a machined surface lies in the fact that it is independent of the resolution of the instrument or length scales. Experiments were carried out based on a rotatable central composite design. A feed-forward ANN architecture trained using the Levenberg-Marquardt (L-M) back-propagation algorithm has been used to model the complex relationship between WEDM process parameters and fractal dimension. After several trials, 4-3-3-1 neural network architecture has been found to predict the fractal dimension with reasonable accuracy, having an overall R-value of 0.97. Furthermore, the genetic algorithm (GA) has been used to predict the optimal combination of machining parameters to achieve a higher fractal dimension. The predicted optimal condition is seen to be in close agreement with experimental results. Scanning electron micrography of the machined surface reveals that the combined ANN-GA method can significantly improve the surface texture produced from WEDM by reducing the formation of re-solidified globules.


2016 ◽  
Vol 15 (02) ◽  
pp. 85-100 ◽  
Author(s):  
P. C. Padhi ◽  
S. S. Mahapatra ◽  
S. N. Yadav ◽  
D. K. Tripathy

The present work is aimed at optimizing the cutting rate (CR), surface roughness (Ra) and dimensional deviation (DD) in wire electrical discharge machining (WEDM) of EN-31 steel considering various input parameters such as pulse-on-time, pulse-off-time, wire tension, spark gap set voltage and servo feed. A face centered central composite design of response surface methodology (RSM) has been adopted to develop the empirical model for the responses. It is often desired to obtain a single parameter setting that can decrease Ra and DD and increase CR simultaneously. Since the responses are conflicting in nature, it is difficult to obtain a single combination of cutting parameters satisfying all the objectives in any one solution. The optimum search of the machining parameter values for maximization of CR and minimization of Ra and DD are formulated as a multi-objective, multi-variable, nonlinear optimization problem using genetic algorithm weighted sum method to evaluate the performance.


2018 ◽  
Vol 1 (1) ◽  
pp. 27-38
Author(s):  
Jun Qi Tan ◽  
Mohd Yazid Abu

The experimental carried out to aim at the selection of the best condition machining parameter combination for wire electrical discharge machining (WEDM) of titanium alloy (Ti–6Al–4V). By using Design Expert 10 software, a series of experiments were performed by selecting pulse-on time, pulse-off time, servo voltage and peak current as parameters. The responses that considered were cutting speed, material removal rate, sparking gap and surface roughness. Based on ANOVA analysis, the effect from the parameters on the responses was determined. The optimum machining parameters setting for the maximum cutting speed, minimum sparking gap and minimum surface roughness were found by proceed optimization experiment. Then, each optimization response had their own combination setting on WEDM to cut titanium alloy. 3D response surface graph such as dome and bowl shape represent maximum and minimum point for the solutions had shown in the report. Finally, predicted and actual value from the experiment have been calculated for validation.


2015 ◽  
Vol 15 (4) ◽  
pp. 327-338 ◽  
Author(s):  
K. Anand Babu ◽  
P. Venkataramaiah

AbstractIn recent days, the silicon carbide particulate reinforced aluminium metal matrix composites are most promising material in various engineering applications due to their strength to weight ratio, wear resistance and thermal resistance over the non-reinforced alloys. However, these materials are very difficult to cut by conventional machining methods due to the presence of silicon carbide particles. To overcome this limitation, the wire electrical discharge machining (WEDM) is employed to machine these composites. The aim of this study is to optimize the process parameters in wire electrical discharge machining (WEDM) of Al6061/SiCp composite using AHP-TOPSIS method. Al 6061/2% SiCp/3 µm particulate metal matrix composite is fabricated by using stir casting method and the uniformity of particle distribution was analyzed by SEM. Taguchi L18 orthogonal array is designed by considering various process parameters viz. Wire Type (WT), Pulse ON Time (T ON), Pulse OFF Time (T OFF), Wire Feed rate (WF) and Sensitivity (S) for conducting WEDM experiments. The obtained experimental results were analyzed and the results revealed that Sensitivity (S) is the prevailing factor on the response characteristics of WEDM followed by pulse ON time (T ON), wire feed rate (WF), Wire Type (WT) and pulse OFF time (T OFF).


2020 ◽  
Vol 8 (5) ◽  
pp. 3045-3052

Wire Electrical Discharge Machining (WEDM) is a widely used non-traditional machining process used for machining of hard and difficult-to-machine materials. Proper selection of machining parameters in WEDM is required for better output performance, such as Material Removal Rate (MRR), Wire Wear Rate (WWR) and Surface Roughness (SR) etc. In the present paper, Pulse ON time, Pulse OFF time, Peak Current, Spark Voltage, Wire Feed and Wire Tension were taken as the input parameters to optimize MRR, WWR and SR. A set of 27 experiments were performed as per Taguchi Design. A Fuzzy model has been proposed to select the optimum values of machining parameters. The proposed fuzzy model was found to predict the experimental values with more than 90 percent accuracy.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2015 ◽  
Vol 760 ◽  
pp. 551-556 ◽  
Author(s):  
Oana Dodun ◽  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Vasile Merticaru ◽  
Gheorghe Nagîţ

Wire electrical discharge machining is a machining method by which parts having various contours could be detached from plate workpieces. The method uses the electrical discharges developed between the workpiece and the wire tool electrode found in an axial motion, when in the work zone a dielectric fluid is recirculated. In order to highlight the influence exerted by some input process factors on the surface roughness parameter Ra in case of a workpiece made of an alloyed steel, a factorial experiment with six independent variables at two variation levels was designed and materialized. As input factors, one used the workpiece thickness, pulse on time, pulse off-time, wire axial tensile force, current intensity average amplitude defined by setting button position and travelling wire electrode speed. By mathematical processing of the experimental results, empirical models were established. Om the base of a power type empirical model, graphical representations aiming to highlight the influence of some input factors on the surface roughness parameter Ra were achieved. The power type empirical model facilitated establishing of order of factors able to exert influence on the surface roughness parameter Ra at wire electrical discharge machining.


Sign in / Sign up

Export Citation Format

Share Document