Cullet-Filled Concrete

2020 ◽  
Vol 992 ◽  
pp. 73-78
Author(s):  
V.N. Shishkanova ◽  
M.V. Ivanko ◽  
Andrey Yu. Kozlov

The paper considers how cullet of different particle-size distribution affects the concrete strength. Experiments have proven that large-particle cullet (1.25 cm or larger) could be used as an aggregate; the concrete strength will be on par with those of ordinary natural/crushed sand concrete. The paper proves the feasibility of injecting highly dispersed silica fume in combination with effective polycarboxylate-based superplasticizers in cullet-based concrete mixtures. Highly dispersed silica fume will positively affect the strength characteristics of concrete, as silica fume in cement rock reacts with Са (ОН)2, which is released upon the hydration of the clinker minerals С3S and С2S; the reaction produces very strong compounds. Concretes containing up to 30% silica fume in combination with a superplasticizer will feature very high early strength. Use of strong aggregates with a 30% cullet content can produce strong concretes; after steamed, a concrete containing silica fume and polycarboxylate-based superplasticizer will reach 90% of the graded strength. Cement-rock microstructure studies show that the polymer component of the STACHEMENT 2280 superplasticizer will gradually transcend from the glass grains to the cement rock. The interface between the polymer-coated glass grains and the cement rock is blurred and barely present. This strengthens the glass-rock adhesion and improves the concrete strength. This is why cullet is recommended for use in the production of curb stones.

1987 ◽  
Vol 114 ◽  
Author(s):  
Sean Wise ◽  
Kevan Jones ◽  
Claudio Herzfeld ◽  
David D. Double

ABSTRACTVery high strength castable chemically bonded ceramic (CBC) materials have been prepared which consist of finely chopped steel fibers and steel aggregate in a silica modified portland cement matrix. This paper examines the effect of metal fiber addition on compressive and flexural strengths. The overall chemistry of the matrix is held constant but the morphological form of silica used and the cure conditions are altered to examine their effect. Compressive strengths in excess of 500 MPa and flexural strengths in excess of 80 MPa can be obtained.It is found that flexural strength increases proportionally with fiber content over the range of 0 to 10% by volume. Compressive strengths are not affected. Use of silica fume in the mixes produces higher strengths at low temperatures than mixes which contain only crystalline silica. High temperature curing/drying (400°C), which produces the highest strengths, produces equivalent properties for formulations with and without silica fume. Higher water/cement ratios are found to reduce compressive strengths but have relatively little effect on the flexural properties.


2012 ◽  
Vol 012 (5) ◽  
pp. 528-533
Author(s):  
Dong-ming Qi ◽  
Rui Zhang ◽  
Jie Xu ◽  
Xing-cong Shen ◽  
Ming-hua Wu

1964 ◽  
Vol 195 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Tsutomu Takamura ◽  
Hiromi Yoshida ◽  
Kiyokatsu Inazuka

2018 ◽  
Vol 195 ◽  
pp. 01012
Author(s):  
Kiki Dwi Wulandari ◽  
Januarti Jaya Ekaputri ◽  
Triwulan ◽  
Chikako Fujiyama ◽  
Davin H. E. Setiamarga

Specific microbial agents such as bacteria are often used in concrete to improve its performance. Some microbes act as self-healing agents to close cracks in concrete, and to increase concrete strength. This paper presents a study to observe the effects of microbe addition to two types of concrete mixtures the fly ash-based, as geopolymer paste, and portland cement paste containing fly ash. Furthermore, the investigation was conducted to compare the properties of each paste, such as its compressive strengths, specific gravities, porosity, microstructures, and XRay diffracting properties. The results indicate that microbial activities positively affected the properties of both, portland cement paste and geopolymer paste. The result reported here strongly suggests that fly ash can be used to produce a high quality, but environmental friendly construction material when it’s mixed together with useful microbes.


2018 ◽  
Vol 9 (1) ◽  
pp. 73 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Longhui Wang ◽  
Wensheng Wang ◽  
Wenjun Li ◽  
...  

Pervious concretes, such as sustainable pavement materials, have great advantages in solving urban flooding, promoting urban ecological balance, and alleviating urban heat island effect, due to its special porous structure. However, pervious concrete typically has high porosity and low strength. The insufficient strength and poor freeze-thaw durability are important factors that restrict its wide application, especially in seasonal frozen areas. Improving the strength and freeze-thaw resistance of pervious concrete will expand its application. Silica fumes, as an industrial by-product waste and supplementary cementitious material, play an important role in improving concrete performance. The objective of this paper was to study the effects of silica fumes on properties of sustainable pervious concrete. Silica fumes were used to replace cement with the equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and silica fume-modified pervious concrete mixtures were prepared in the lab. The porosity, permeability, compressive strength, flexural strength, and freeze-thaw resistance properties of all mixtures were tested. The results indicated that the addition of silica fumes significantly improved the strength and freeze-thaw resistance of pervious concrete. The porosity and permeability of all pervious concrete mixtures changed little with the content of silica fumes due to the adoption of the equal volume replacement method.


2019 ◽  
Vol 289 ◽  
pp. 06001
Author(s):  
Serkan Karatosun ◽  
Muhammet Asan ◽  
Oguz Gunes

Rapid and reliable condition assessment of reinforced concrete structures in high seismicity regions is a priority task in estimating their seismic safety. Non-destructive testing (NDT) methods may contribute to the condition assessment practice by providing fast and reliable strength estimation while causing minimal or no damage to the structure. Drilling resistance is an NDT method that has been used for mechanical characterization of natural stone and wood by measuring the force response for constant penetration rate and rotational speed. This paper focuses on the relationship between drilling resistance and compressive strength of concrete, including when it is combined with other NDT methods. Concrete cube samples produced using 6 different concrete mixtures were tested. Correlation equations were then obtained using statistical analysis. The results reveal that it may be possible to reliably estimate the compressive strength of concrete using drilling resistance method.


Sign in / Sign up

Export Citation Format

Share Document