Magnetic Properties of Mn-Zn Ferrite Nanoparticles Fabricated by Conventional Ball-Milling

2007 ◽  
Vol 124-126 ◽  
pp. 891-894
Author(s):  
Hae June Je ◽  
Byung Kook Kim

Mn-Zn ferrite nanoparticles were fabricated via conventional ball-milling and their magnetic properties were investigated. By ball-milling of Mn0.53Zn0.42Fe2.05O4 agglomerates for 48h with and without a dispersant (Darvan-C (ammonium polymethacrylate)), nanoparticles having average particle size of 60 nm were obtained. The saturation magnetizations (Ms) of thus obtained Mn-Zn ferrite nanoparticles were 49 and 62 emu/g for dispersant-added and dispersant-non-added one, respectively. When the nanoparticles were heat-treated at 400, however, the Ms became comparable: 63 and 65 emu/g. When the nanoparticles were heat-treated at 600, moreover, the Ms became comparable with that of bulk ferrites: 75~78 emu/g. These magnetic properties were attributed to the surface spin disorder effects resulting from the coating of organic dispersant molecules on the surfaces of the nanoparticles as well the structural disorder on the surfaces the nanoparticles.

2019 ◽  
Vol 11 (2) ◽  
pp. 225-234
Author(s):  
S. Pande ◽  
M. M. Islam ◽  
S. C. Mohanta ◽  
Nasir Uddin

Single-domain manganese ferrite nanoparticles were synthesized through one-step chemical co-precipitation technique using diethanolamine which acted simultaneously as precipitating and capping agent. The synthesized nanoparticles were characterized by XRD, FTIR, TGA, EDX, FESEM and VSM. XRD pattern showed the presence of peaks corresponding to the single-phase inverse spinel structure with an average crystallite size of 59.6 nm. The average particle size determined by FESEM was 46.8 nm. In addition, the magnetic properties of the nanoparticles analyzed by VSM exhibited nearly superparamagnetic property with a high saturation magnetization of 77.31 emu/g with little coercivity (10.53 emu/g) and remanence (9.32 emu/g) at 300 K temperature. TGA and FTIR results confirmed the binding of diethanolamine onto the surface of manganese ferrite nanoparticles. The synthesized nanoparticles exhibited single crystalline phase with improved magnetic properties.  


2009 ◽  
Vol 1202 ◽  
Author(s):  
Xiaomei Guo ◽  
Tiju Thomas ◽  
Kewen Kevin Li ◽  
Jifa Qi ◽  
Yangyun Wang ◽  
...  

AbstractBall milling of ammonothermally synthesized GaN powders was performed in an ethanol solution for a variety of durations, resulting in average particle sizes of nanometer. The ball milled powders showed an obviously brightened color and improved dispersability, indicating reduced levels of aggregation. X-ray diffraction (XRD) peaks of the ball milled GaN powders were significantly broadened compared to those of the as-synthesized powders. The broadening of the XRD peaks was partially attributed to the reduction in the average particle size, which was confirmed through SEM analyses. On the other hand, rare earth doping of commercial GaN powders was also achieved through a ball mill assisted solid state reaction process. Rare earth salts were mixed with GaN powder by ball milling. The as-milled powders were heat treated under different conditions to facilitate the dopant diffusion. Luminescence properties of the rare earth doped GaN powders at near infrared range were investigated and the results were discussed.


2021 ◽  
Vol 260 ◽  
pp. 124178
Author(s):  
Pavel Veverka ◽  
Lenka Kubíčková ◽  
Zdeněk Jirák ◽  
Vít Herynek ◽  
Miroslav Veverka ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1097
Author(s):  
Luran Zhang ◽  
Xinchen Du ◽  
Hongjie Lu ◽  
Dandan Gao ◽  
Huan Liu ◽  
...  

L10 ordered FePt and FePtCu nanoparticles (NPs) with a good dispersion were successfully fabricated by a simple, green, one-step solid-phase reduction method. Fe (acac)3, Pt (acac)2, and CuO as the precursors were dispersed in NaCl and annealed at different temperatures with an H2-containing atmosphere. As the annealing temperature increased, the chemical order parameter (S), average particle size (D), coercivity (Hc), and saturation magnetization (Ms) of FePt and FePtCu NPs increased and the size distribution range of the particles became wider. The ordered degree, D, Hc, and Ms of FePt NPs were greatly improved by adding 5% Cu. The highest S, D, Hc, and Ms were obtained when FePtCu NPs annealed at 750 °C, which were 0.91, 4.87 nm, 12,200 Oe, and 23.38 emu/g, respectively. The structure and magnetic properties of FePt and FePtCu NPs at different annealing temperatures were investigated and the formation mechanism of FePt and FePtCu NPs were discussed in detail.


RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 25258-25267 ◽  
Author(s):  
R. A. Pawar ◽  
Sunil M. Patange ◽  
A. R. Shitre ◽  
S. K. Gore ◽  
S. S. Jadhav ◽  
...  

Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 410 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Myroslava Omelchenko ◽  
Jacek Szczytko ◽  
Tadeusz Chudoba ◽  
Stanisław Gierlotka ◽  
...  

Zinc oxide nanoparticles codoped with Co2+ and Mn2+ ions (Zn(1−x−y)MnxCoyO NPs) were obtained for the first time by microwave solvothermal synthesis. The nominal content of Co2+ and Mn2+ in Zn(1−x−y)MnxCoyO NPs was x = y = 0, 1, 5, 10 and 15 mol % (the amount of both ions was equal). The precursors were obtained by dissolving zinc acetate dihydrate, manganese (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate in ethylene glycol. The morphology, phase purity, lattice parameters, dopants content, skeleton density, specific surface area, average particle size, average crystallite size, crystallite size distribution and magnetic properties of NPs were determined. The real content of dopants was up to 25.0% for Mn2+ and 80.5% for Co2+ of the nominal content. The colour of the samples changed from white to dark olive green in line with the increasing doping level. Uniform spherical NPs with wurtzite structure were obtained. The average size of NPs decreased from 29 nm to 21 nm in line with the increase in the dopant content. Brillouin type paramagnetism and an antiferromagnetic interaction between the magnetic ions was found for all samples, except for that with 15 mol % doping level, where a small ferromagnetic contribution was found. A review of the preparation methods of Co2+ and Mn2+ codoped ZnO is presented.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 716-720
Author(s):  
B. WALL ◽  
M. KATTER ◽  
W. RODEWALD ◽  
M. VELICESCU

In cast Sm2Fe17 ingots minor fractions of SmFe2 and SmFe3 may occur. Nitrogenation of such alloy-powders inidicates that only Sm2Fe17 forms an interstitial solid solution whereas SmFe2 and SmFe3 decompose directly into SmN and α-Fe. From Sm2Fe17Nx alloy powders with an average particle size of about 3 μm anisotropic magnets were prepared by adding 15 wt% Zn-powder. Annealing at 390 ºC results in intrinsic coercivities > 15 kOe promoted by the formation of an unknown binary Fe8Zn92-compound. Whereas annealing at temperatures > 420 ºC leads to the formation of binary Fe3Zn7 and ternary Sm2FeZn2. By the formation of Sm2FeZn2 from Sm2Fe17Nx+Zn some α-Fe occurs inducing a step in the demagnetization curve J(H).


Sign in / Sign up

Export Citation Format

Share Document