The Influence of the Initial State on Microstructure and Mechanical Properties of Hydrostatically Extruded Titanium

2008 ◽  
Vol 140 ◽  
pp. 191-196 ◽  
Author(s):  
Krzysztof Topolski ◽  
Halina Garbacz ◽  
Wacław Pachla ◽  
Krzysztof Jan Kurzydlowski

Titanium was subjected to hydrostatic extrusion, a method of producing Severe Plastic Deformation (SPD). The experiments were aimed at refining the microstructure of the titanium in order to improve some of its mechanical properties. The effect of the initial state of titanium on the process of extrusion process and the final product was investigated. The results of these investigations are used to establish the optimum conditions for the hydrostatic extrusion process and more easily selecting the initial condition of the material according to the intended application of the extruded product.

2006 ◽  
Vol 114 ◽  
pp. 145-150 ◽  
Author(s):  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Małgorzata Lewandowska ◽  
Wacław Pachla ◽  
Mariusz Kulczyk ◽  
...  

Hydrostatic extrusion can be viewed as one of the methods of Severe Plastic Deformation, SPD, for the fabrication of ultra-fine grained alloys which causes a significant increase in the mechanical properties such as tensile strength and hardness. In the present study the microstructure of 6082 aluminium alloy after hydrostatic extrusion was investigated. Hydroextrusion was performed in three steps with accumulated true strains of 1.34, 2.73 and 3.74 respectively. Microstructural observations were carried out using SEM, TEM and light microscopy. Grain and inclusion sizes, shapes and distribution were investigated in the HE processed samples. The study has shown that the hydrostatic extrusion process results in a profound refinement of both the grain size and the inclusions in 6082 aluminium alloy.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


2018 ◽  
Vol 275 ◽  
pp. 134-146
Author(s):  
Stanislav Rusz ◽  
Ondřej Hilšer ◽  
Stanislav Tylšar ◽  
Lubomír Čížek ◽  
Tomasz Tański ◽  
...  

The technology of structure refinement in materials with the aim of achieving substantial mechanical properties and maintaining the required plasticity level is becoming increasingly useful in industrial practice. Magnesium alloys are very progressive materials for utilization in practice thanks to their high strength-to-weight ratios (tensile strength/density). The presented paper analyses the effect of the input heat treatment of the AZ31 alloy on the change of structure and strength properties through the process of severe plastic deformation (SPD), which finds an increasing utilization, especially in the automotive and aviation industry. For the study of the influence of the SPD process (ECAP method) on the properties of the AZ31 alloy, two types of thermal treatment of the initial state of the structure were selected. The analysis of the structure of the AZ31 alloy was performed in the initial state without heat treatment and subsequently after heat treatment. In the next part, the influence of the number of passes on the strengthening curves was evaluated. Mechanical properties of the AZ31 alloy after ECAP were evaluated by hardness measurement and completed by structure analysis.


2015 ◽  
Vol 60 (2) ◽  
pp. 1437-1440 ◽  
Author(s):  
B. Leszczyńska-Madej ◽  
M.W. Richert ◽  
M. Perek-Nowak

AbstractProcesses of severe plastic deformation (SPD) are defined as a group of metalworking techniques in which a very large plastic strain is imposed on a bulk material in order to make an ultra-fine grained metal. The present study attempts to apply Equal-Channel Angular Pressing (ECAP), Hydrostatic Extrusion (HE) and combination of ECAP and HE to 99.5% pure aluminium. ECAP process was realized at room temperature for 16 passes through route Bc using a die having an angle of 90°. Hydrostatic extrusion process was performed with cumulative strain of 2.68 to attain finally wire diameter of d = 3 mm. The microstructure of the samples was investigated by means of transmission and scanning electron microscopy. Additionally, the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. The measured grain/subgrain size show, that regardless the mode of deformation process (ECAP, HE or combination of ECAP and HE processes), grain size is maintained at a similar level – equal to d = 0.55-0.59μm. A combination of ECAP and HE has achieved better properties than either single process and show to be a promising procedure for manufacturing bulk UFG aluminium.


2020 ◽  
pp. 230-235
Author(s):  
A.A. Vasil’ev ◽  
S.P. Stetsenko ◽  
R.L. Vasilenko ◽  
D.G. Malykhin ◽  
P.I. Stoyev ◽  
...  

Studies were made into the effect of severe plastic deformation on the mechanical properties, structure, and texture of high-purity cast beryllium. For the first time, angular pressing of high-purity cast beryllium was carried out at temperatures of 600 and 500 °C. It is shown that the degree of grain refinement during angular pressing into a strip reaches a significant value. In a single deformation cycle, the grain is crushed from 3 mm down to 10 μm. Temperature dependences of the mechanical properties of the material of extruded billets in the initial state and after recrystallization annealing at a temperature of 650 °C for one hour were studied. It has been established that the best mechanical properties are shown by the samples of material deformed at 600 °C with subsequent annealing at 650 °C for an hour.


2012 ◽  
Vol 622-623 ◽  
pp. 705-709 ◽  
Author(s):  
U. Mohammed Iqbal ◽  
V.S. Senthil Kumar

Severe plastic deformation is one of the emerging and promising techniques applied to bulk materials to produce fine grain structure with attractive properties. This study aims to investigate the effect of extrusion parameters like extrusion temperature, number of passes on the equal channel angular pressing and twist extrusion forming behavior of AA7075-T6 Aluminum alloy by hot extrusion process. AA7075-T6 samples of 70x28x18 mm cross sections extruded by equal channel angular pressing and twist extrusion process was subjected to microstructure analysis, hardness and tensile tests in order to determine their mechanical properties. As a result of the experiments, it was determined that twist extrusion leads to more grain refinement at high temperatures with more number of passes compared to equal channel angular pressing. SEM micrographs show that there is severe orientation of the grains facilitated by the extrusion process which enhances the strength. The dense banding of the grains had effected in marginal hardness enhancement in the matrix of the specimens processed by twist extrusion and equal channel angular extrusion process.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
M. B. Jabłońska ◽  
K. Kowalczyk ◽  
M. Tkocz ◽  
R. Chulist ◽  
K. Rodak ◽  
...  

AbstractThis paper presents some results of the influence of severe plastic deformation on the microstructure evolution, grain refinement aspect, and mechanical properties of ultra-low carbon steel. Ti-stabilized experimental IF steel was deformed at a room temperature with unconventional SPD process—dual rolls equal channel extrusion (DRECE). Mechanical properties and structure of ferritic steel in initial state and after selected steps of deformation were investigated. The mechanical properties were determined by static tensile tests carried out at a room temperature and microhardness research. The structural investigations involved using scanning transmission electron microscopy observations, electron back scattered diffraction and measurements of the crystallographic texture. The DRECE process affects the evolution of the structure. The microstructural investigations revealed that the processed strips exhibited a dislocation cell and grain structures with mostly low angle grain boundaries. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is homogeneous along the strips thickness. The mechanical properties of the DRECE-processed IF steel strips increased with an increase the number of passes.


2012 ◽  
Vol 57 (4) ◽  
pp. 911-917 ◽  
Author(s):  
M.W. Richert ◽  
B. Leszczyńska-Madej ◽  
W. Pachla ◽  
J. Skiba

The changes of Al99.5 microstructure and properties deformed by hydrostatic extrusion process in the conditions of constant strain rate (1.35×102s-1) and variable deformation (φ = 1.44÷2.85) were investigated. The samples were investigated by means both optical (LM) and transmission electron microscopy (TEM). The size of subgrain was statistically measured by mean chord. To establish the influence of hydrostatic extrusion on the properties of the polycrystalline aluminium Al99.5, the microhardness was measured and the tensile test was performed. The bands and shear bands were the characteristic feature of the sample microstructure. TEM micrographs show equiaxed subgrains with small density of dislocations inside. The measured subgrain size was placed in the range of d = 550÷650 nm. The mechanical properties of polycrystalline aluminium Al99.5 keep almost the same level in the investigated range of deformations. It was found that after the initial deformation microhardness and yield stress nearly twice increase in comparison to the initial state. The greatest increase of properties was observed after deformation φ = 1.44. Then the mechanical properties stabilize.


Sign in / Sign up

Export Citation Format

Share Document