TEM Investigation of the 3C/6H-SiC Transformation Interface in Layers Grown by Sublimation Epitaxy

2010 ◽  
Vol 163 ◽  
pp. 97-100 ◽  
Author(s):  
Maya Marinova ◽  
Alkyoni Mantzari ◽  
Milena Beshkova ◽  
Mikael Syväjärvi ◽  
Rositza Yakimova ◽  
...  

In the present work Conventional and High Resolution Transmission Electron Microscopy has been used to examine the structure and types of interfaces between 3C-SiC and 6H-SiC for samples grown by Sublimation Epitaxy. The layers were grown on on-axis 6H-SiC substrates at different temperature gradients. The changed growth conditions influence on the nucleation of 3C-SiC on the 6H-SiC substrates and their competition with nucleation of 6H-SiC islands. Three specific types of 3C/6H-SiC interfaces were observed and the implications of these observations are discussed.

2010 ◽  
Vol 645-648 ◽  
pp. 367-370 ◽  
Author(s):  
Maya Marinova ◽  
Alkyoni Mantzari ◽  
Milena Beshkova ◽  
Mikael Syväjärvi ◽  
Rositza Yakimova ◽  
...  

In the present work the structural quality of 3C-SiC layers grown by sublimation epitaxy is studied by means of conventional and high resolution transmission electron microscopy. The layers were grown on Si-face 6H-SiC nominally on-axis substrates at a temperature of 2000°C and different temperature gradients, ranging from 5 to 8 °C /mm. The influence of the temperature gradient on the structural quality of the layers is discussed. The formation of specific twin complexes and conditions for lower stacking fault density are investigated.


Author(s):  
Nikolai N. Faleev ◽  
Christiana B. Honsberg ◽  
David J. Smith

Abstract Different epitaxial structures have been studied by high-resolution x-ray diffraction and x-ray topography, Transmission Electron Microscopy and Atomic Force Microscopy to establish correlations between epitaxial growth conditions and crystal perfection. It was confirmed that epitaxial growth under initial elastic stress inevitably leads to the creation of extended crystal defects like dislocation loops and edge dislocations in the volume of epitaxial structures, which strongly affect crystal perfection and physical properties of future devices. It was found that the type of created defects, their density and spatial distribution strongly depended on growth conditions: the value and sign of the initial elastic strain, the elastic constants of solid solutions, the temperature of deposition and growth rate, and the thickness of the epitaxial layers. All of the investigated structures were classified by their crystal perfection, using the volume density of extended defects as a parameter. It was found that the accommodation and relaxation of initial elastic stress and creation of crystal defect were up to four stages “chain” processes, necessary to stabilize the crystal structure at a level corresponding to the deterioration power of particular growth conditions.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Carbon ◽  
2017 ◽  
Vol 117 ◽  
pp. 174-181 ◽  
Author(s):  
Chang’an Wang ◽  
Thomas Huddle ◽  
Chung-Hsuan Huang ◽  
Wenbo Zhu ◽  
Randy L. Vander Wal ◽  
...  

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


Sign in / Sign up

Export Citation Format

Share Document