Comparison of Single and Multi-Population Evolutionary Algorithm for Path Planning in Navigation Situation

2013 ◽  
Vol 210 ◽  
pp. 166-177 ◽  
Author(s):  
Łukasz Kuczkowski ◽  
Roman Śmierzchalski

In this paper a comparison of single and multi-population evolutionary algorithm is presented. Tested algorithms are used to determine close to optimal ship paths in collision avoidance situation. For this purpose a path planning problem is defined. A specific structure of the individual path and fitness function is presented. Principle of operation of single-population and multi-population evolutionary algorithm is described. Using presented algorithms the simulations on three close to real sea environments were performed. Regardless of the test situation constant time simulation was maintained. Obtained results are presented in graphical form (sequences of successive stages of the simulation) and in form of table in which the values of fitness function for best individual in each simulation were compared. Undertaken research allow to select evolutionary algorithm that, assuming constant simulation time, will determine a better path in close to real collision avoidance situation at sea.

Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


2018 ◽  
Vol 8 (9) ◽  
pp. 1425 ◽  
Author(s):  
Yang Xue ◽  
Jian-Qiao Sun

Path planning problems involve finding a feasible path from the starting point to the target point. In mobile robotics, path planning (PP) is one of the most researched subjects at present. Since the path planning problem is an NP-hard problem, it can be solved by multi-objective evolutionary algorithms (MOEAs). In this article, we propose a multi-objective method for solving the path planning problem. It is a population evolutionary algorithm and solves three different objectives (path length, safety, and smoothness) to acquire precise and effective solutions. In addition, five scenarios and another existing method are used to test the proposed algorithm. The results show the advantages of the algorithm. In particular, different quality metrics are used to assess the obtained results. In the end, the research indicates that the proposed multi-objective evolutionary algorithm is a good choice for solving the path planning problem.


2021 ◽  
Vol 11 (5) ◽  
pp. 2408
Author(s):  
José Oñate-López ◽  
Loraine Navarro ◽  
Christian G. Quintero M. ◽  
Mauricio Pardo

In this work, the problem of exploring an unknown environment with a team of agents and search different targets on it is considered. The key problem to be solved in multiple agents is choosing appropriate target points for the individual agents to simultaneously explore different regions of the environment. An intelligent approach is presented to coordinate several agents using a market-based model to identify the appropriate task for each agent. It is proposed to compare the fitting of the market utility function using neural networks and optimize this function using genetic algorithms to avoid heavy computation in the Non-Polynomial (NP: nondeterministic polynomial time) path-planning problem. An indoor environment inspires the proposed approach with homogeneous physical agents, and its performance is tested in simulations. The results show that the proposed approach allocates agents effectively to the environment and enables them to carry out their mission quickly.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


Sign in / Sign up

Export Citation Format

Share Document