A RESEARCH ON TECHNIQUES, MODELS AND METHODS PROPOSED FOR SHIP COLLISION AVOIDANCE PATH PLANNING PROBLEM

Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.

2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
R Fışkın ◽  
H Kişi ◽  
E Nasibov

The development of soft computing techniques in recent years has encouraged researchers to study on the path planning problem in ship collision avoidance. These techniques have widely been implemented in marine industry and technology-oriented novel solutions have been introduced. Various models, methods and techniques have been proposed to solve the mentioned path planning problem with the aim of preventing reoccurrence of the problem and thus strengthening marine safety as well as providing fuel consumption efficiency. The purpose of this study is to scrutinize the models, methods and technologies proposed to settle the path planning issue in ship collision avoidance. The study also aims to provide certain bibliometric information which develops a literature map of the related field. For this purpose, a thorough literature review has been carried out. The results of the study have pointedly showed that the artificial intelligence methods, fuzzy logic and heuristic algorithms have greatly been used by the researchers who are interested in the related field.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012002
Author(s):  
Zhuokai Wu

Abstract The multi-robot path planning aims to explore a set of non-colliding paths with the shortest sum of lengths for multiple robots. The most popular approach is to artificially decompose the map into discrete small grids before applying heuristic algorithms. To solve the path planning in continuous environments, we propose a decentralized two-stage algorithm to solve the path-planning problem, where the obstacle and inter-robot collisions are both considered. In the first stage, an obstacle- avoidance path-planning problem is mathematically developed by minimizing the travel length of each robot. Specifically, the obstacle-avoidance trajectories are generated by approximating the obstacles as convex-concave constraints. In the second stage, with the given trajectories, we formulate a quadratic programming (QP) problem for velocity control using the control barrier and Lyapunov function (CBF-CLF). In this way, the multi-robot collision avoidance as well as time efficiency are satisfied by adapting the velocities of robots. In sharp contrast to the conventional heuristic methods, path length, smoothness and safety are fully considered by mathematically formulating the optimization problems in continuous environments. Extensive experiments as well as computer simulations are conducted to validate the effectiveness of the proposed path-planning algorithm.


2013 ◽  
Vol 210 ◽  
pp. 166-177 ◽  
Author(s):  
Łukasz Kuczkowski ◽  
Roman Śmierzchalski

In this paper a comparison of single and multi-population evolutionary algorithm is presented. Tested algorithms are used to determine close to optimal ship paths in collision avoidance situation. For this purpose a path planning problem is defined. A specific structure of the individual path and fitness function is presented. Principle of operation of single-population and multi-population evolutionary algorithm is described. Using presented algorithms the simulations on three close to real sea environments were performed. Regardless of the test situation constant time simulation was maintained. Obtained results are presented in graphical form (sequences of successive stages of the simulation) and in form of table in which the values of fitness function for best individual in each simulation were compared. Undertaken research allow to select evolutionary algorithm that, assuming constant simulation time, will determine a better path in close to real collision avoidance situation at sea.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Sign in / Sign up

Export Citation Format

Share Document