Investigating Fatigue Strength of Vacuum Carburized 17CrNi6-6 Steel Using a Resonance High Frequency Method

2014 ◽  
Vol 225 ◽  
pp. 45-52 ◽  
Author(s):  
Piotr Kula ◽  
Konrad Dybowski ◽  
Sebastian Lipa ◽  
Robert Pietrasik ◽  
Radomir Atraszkiewicz ◽  
...  

The bending fatigue strength of 17CrNi6-6 steel subjected to vacuum carburizing with high pressure gas hardening has been measured using a novel high-frequency technique. The test records the changes in resonance and consists of observing resonance frequency changes in a vibrating system with a single degree of freedom as a result of the forming of a fatigue crack. Moreover, a mechanism of fatigue nucleation and propagation in steel hardened by vacuum carburizing is presented.

Author(s):  
D. Fuchs ◽  
S. Schurer ◽  
T. Tobie ◽  
K. Stahl

AbstractDemands on modern gearboxes are constantly increasing, for example to comply with lightweight design goals or new CO2 thresholds. Normally, to increase performance requires making gearboxes and powertrains more robust. However, this increases the weight of a standard gearbox. The two trends therefore seem contradictory. To satisfy both of these goals, gears in gearboxes can be shot-peened to introduce high compressive residual stresses and improve their bending fatigue strength. To determine a gear’s tooth root bending fatigue strength, experiments are conducted up to a defined number of load cycles in the high cycle fatigue range. However, investigations of shot-peened gears have revealed tooth root fracture damage initiated at non-metallic inclusions in and above the very high cycle fatigue range. This means that a further reduction in bending load carrying capacity has to be expected at higher load cycles, something which is not covered under current standard testing conditions. The question is whether there is a significant decrease in the bending load carrying capacity and, also, if pulsating tests conducted at higher load cycles—or even tests on the FZG back-to-back test rig—are necessary to determine a proper endurance fatigue limit for shot-peened gears. This paper examines these questions.


Author(s):  
S. A. Nayfeh ◽  
A. H. Nayfeh

Abstract We study the response of a single-degree-of-freedom system with cubic nonlinearities to an amplitude-modulated excitation whose carrier frequency is much higher than the natural frequency of the system. The only restriction on the amplitude modulation is that it contain frequencies much lower than the carrier frequency of the excitation. We apply the theory to different types of amplitude modulation and find that resonant excitation of the system may occur under some conditions.


2021 ◽  
Vol 2021.59 (0) ◽  
pp. 05a1
Author(s):  
Ryo ASAKURA ◽  
Kohei HIBI ◽  
Kenichi SAKAMOTO ◽  
Toshiyasu OMURA ◽  
Ryosuke NISHI ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 2179-2182 ◽  
Author(s):  
Mehmet Cingi ◽  
Onur Meydanoglu ◽  
Hasan Guleryuz ◽  
Murat Baydogan ◽  
Huseyin Cimenoglu ◽  
...  

In this study, the effect of thermal oxidation on the high cycle rotating bending fatigue behavior of Ti6Al4V alloy was investigated. Oxidation, which was performed at 600°C for 60 h in air, considerably improved the surface hardness and particularly the yield strength of the alloy without scarifying the tensile ductility. Unfortunately, the rotating bending fatigue strength at 5x106 cycles decreased from about 610 MPa to about 400 MPa upon oxidation. Thus, thermal oxidation leaded a reduction in the fatigue strength of around 34%, while improving the surface hardness (HV0.1) and yield strength 85 % and 36 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document