Fatigue Crack Propagation in Haynes 230: A Comparison between Single and Polycrystal Crack Closure Levels

2016 ◽  
Vol 258 ◽  
pp. 243-248 ◽  
Author(s):  
Stefano Beretta ◽  
Stefano Foletti ◽  
Silvio Rabbolini ◽  
Huseyin Sehitoglu

An experimental campaign was developed to evaluate fatigue crack growth in Haynes 230. The effects of plasticity induced crack closure were investigated with Digital Image Correlation. In particular, crack opening levels were measured with the digital extensometer technique, which allowed the evaluation of crack flanks relative displacements. Experimental results were compared with a reference da/dn – ΔKeff curve and with the data of a previous study, which analyzed single crystal propagation. It was found that the adoption of crack closure local measurements provided an accurate estimation of crack propagation driving forces, since all the experimental points from single crystals and polycrystals collapse onto the da/dn – ΔKeff curve.

Author(s):  
B. Tranchand ◽  
S. Chapuliot ◽  
V. Aubin ◽  
S. Marie ◽  
M. Bourgeois

Demonstration of large components integrity under seismic loading is based up to now on monotonic tearing resistance curves. However, it is well known that cycles decrease the fracture resistance of the material, mainly according to the loading ratio. Most studies use monotonic methods to analyze reversible cyclic loading and the associated increase of crack propagation: Delta J-R curves are largely used. For monotonic loadings, Turner [1] proposed a decomposition of the rate of dissipated fracture energy. This decomposition led on the determination of an energetic criterion for ductile fracture [2]. This intrinsic criterion allows the fracture prediction on large components. This paper aims to propose an analysis of cyclic ductile fracture which should allow the determination of an energetic criterion under large amplitude cycles. For that purpose, compact tension specimens are taken from a carbon steel pipe (Tu42C) used in the secondary circuit of French PWR. A series of cyclic tearing tests are carried out under quasi-static loadings. The effects of loading ratio and incremental plastic displacement are quickly studied. Here, we present an energetic analysis which take into account the crack closure and crack opening. Indeed, displacement fields around the crack tips are measured with digital image correlation and linked with electric potential measurement. That allows an accurate determination of crack closure and crack opening and let a precise calculation of fracture energy possible. The energetic fracture criterion will be confirmed with crack propagation prediction on different geometry like CT specimen and a through-wall-cracked pipe under cyclic reversed loadings.


Author(s):  
Eiichi Hamada ◽  
Yuto Furuya ◽  
Atsushi Hosoi ◽  
Yuji Morita ◽  
Hiroyuki Kawada

Healing technology for metallic materials is an important subject in terms of long-term reliability and durability of structural members, a healing technology to heal fatigue crack by applying heat treatment at annealing temperature level has been discovered. In this study, the influences of plasticity-induced crack closure on healing were evaluated by obtaining the crack opening load during the pre-crack introduction and evaluating the fatigue crack propagation characteristics before and after the healing heat treatment, using compact tension specimens made of carbon steel with different test conditions. As a result, the specimen with high crack opening load showed high healing effect and were able to heal up to 95% of the pre-crack length. This suggested that the residual compressive stress due to the plasticity-induced crack closure accelerates the solid-state diffusion bonding during the crack healing process and this leads to the improvement of the healing effect.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2481 ◽  
Author(s):  
Yangcheng Hu ◽  
Zhiyi Liu ◽  
Qi Zhao ◽  
Song Bai ◽  
Fei Liu

P-texture effect on the fatigue crack propagation (FCP) resistance in an Al-Cu-Mg alloy containing a small amount of Ag, is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron back scattering diffraction (EBSD). Results shows that the high intensity P-texture sheet has lower σ0.2/σb, lower FCP rate and higher damage tolerance than random texture sheet. Fracture analysis indicates that the striations spacing of high intensity P-texture sheet is much smaller than that of random texture sheet and it has a rougher fatigue fracture surface, which causes a significant roughness induced crack closure (RICC) effect. The calculation results manifest that high intensity P-texture sheet possesses a higher crack closure level reaching 0.73 as compared to random texture sheet (only 0.25). The statistical analysis results reveal the P-grains have large twist angle of 105–170° and tilt angle of 5–60° with neighboring grains, which is similar to Goss-grains. This is the fundamental reason that P-texture sheet has the same FCP resistance and induces fatigue crack deflection as Goss-texture sheet. Additionally, the most {111} slipping planes of P-grains are distributed in the range of 30–50° deviating from transverse direction of the sheet. This results in more {111} slipping planes to participate in cyclic plastic deformation, which is beneficial to reduce fatigue damage accumulation and improve the damage tolerance of Al-Cu-Mg-Ag alloy.


Sign in / Sign up

Export Citation Format

Share Document