Deposition and Electrical Resistivity of Oxygen-Deficient Tin Oxide Films Prepared by RF Magnetron Sputtering at Different Powers

2018 ◽  
Vol 281 ◽  
pp. 504-509
Author(s):  
Qi Wang ◽  
Zhi Jian Peng ◽  
Yang Wang ◽  
Xiu Li Fu

A series of oxygen-deficient tin oxide thin films were deposited by radio frequency magnetron sputtering a sintered tin oxide ceramic target under pure argon atmosphere at different sputtering powers (80-160 w) under the based pressure of no more than 2.0×10-4 Pa, sputtering pressure of 2.0 Pa and deposition time of 20 min. It was revealed that all the as-deposited films were oxygen-deficient tin oxide films, and the main defect in films was oxygen vacancy (VO), whose concentration gradually decreased with the increase of sputtering power. The films prepared at a power of no more than 120 w were amorphous, and as the sputtering power increased to 140 and 160 w, the deposited thin films exhibited polycrystalline characteristics with (110), (101) and (211) diffraction peaks of tin oxide. The grain size, deposition rate as well as thickness of the obtained films rose up with increasing sputtering power. In addition, as the sputtering power raised, the electrical resistivity of the films increased, due to the electron conducting mechanism controlled by VO in the samples.

2018 ◽  
Vol 25 (04) ◽  
pp. 1850093 ◽  
Author(s):  
QI WANG ◽  
CHENGBIAO WANG ◽  
CHANGCHUN LV ◽  
YANG WANG ◽  
ZHIJIAN PENG ◽  
...  

Oxygen-deficient tin oxide thin films were prepared by radiofrequency magnetron sputtering with a sintered non-stoichiometric tin oxide ceramic target under an atmosphere of various ratios of O2/Ar from pure Ar to 1:1. X-ray diffraction analysis showed that the thin films were polycrystalline with relatively strong (1 1 0), (1 0 1) and (2 1 1) diffraction peaks. Scanning electron microscopy observation revealed that the thin films prepared at different O2/Ar ratios were all of relatively dense and homogeneous structure. With increasing O2/Ar ratio, the grain size of the films decreased slightly, and their chemical composition became close to the stoichiometric SnO2; but the deposition rate as well as film thickness increased first and then decreased sharply. It was revealed that the main defect in obtained films was oxygen vacancy (VO), and as the O2/Ar ratio increased, the concentration of VO fell down monotonously, which would lead to an increased electrical resistivity.


2001 ◽  
Vol 40 (Part 1, No. 5A) ◽  
pp. 3364-3369 ◽  
Author(s):  
Wenli Deng ◽  
Taizo Ohgi ◽  
Hitoshi Nejo ◽  
Daisuke Fujita

Sign in / Sign up

Export Citation Format

Share Document