Characterization of Carbonatation Rate of Alkali-Activated Blast Furnace Slag in Various Environments

2021 ◽  
Vol 325 ◽  
pp. 40-46
Author(s):  
Richard Dvořák ◽  
Petr Hrubý ◽  
Libor Topolář

Carbonatation represents one of the potential degradation processes whose can negatively affect the service life of constructions based on the inorganic binders. The carbonatation depth of the constructions when exposed to various environments is significantly dependent on the existing conditions. The most crucial parameters are the partial pressure of carbon dioxide and humidity. There were selected four environments for the deposition of samples made of the alkali-activated blast furnace slag mortars (exterior, interior, water and CO2 chamber) in this study. These types of environments guarantee the variation of desired parameters influencing the carbonatation rate. The progress of carbonatation was evaluated with a selected technique in time intervals of 28; 56 and 84 days of the sample's exposition to the selected environments. The characterization was done using the destructive techniques (compressive and flexural strength, phenolphthalein method) as well as the non-destructive one like the Impact-Echo or the Ultrasound time passage measurement. The combination of these techniques allows to determine and evaluate the progress of carbonation without the destructive testing of the samples which is necessary for the real applications of these materials.

2021 ◽  
Vol 325 ◽  
pp. 131-136
Author(s):  
Iveta Plšková ◽  
Petr Hrubý ◽  
Libor Topolář ◽  
Michal Matysík

The paper summarizes partial results of a study of degradation of materials based on alkali-activated blast-furnace slag (AAS) and comparative on cement CEM III/A 32.5 R after exposure to aggressive environments. It further specifies the possibilities for utilising destructive and non-destructive techniques to determine the progress of degradation and characterizes the degree of their correlation. After 28 days of ageing in a water environment, the produced test specimens (40×40×160 mm beams) were placed in aggressive media (ammonium nitrate solutions; sodium sulfate, rotating water) and after subsequent 28, 56 and 84 days of degradation were subjected to testing. Testing comprised both a destructive form (determination of compressive strength and flexural strength) and a selected non-destructive technique (Impact-echo method). The partial outputs were supplemented by the results acquired from monitoring weight changes. In addition, the development of Ultrasonic Pulse Velocity in relation to the progress of the degradation processes was also monitored. While the exposure of both test specimens to water and sodium sulfate did not result in any significant changes, the exposure to the ammonium nitrate solution exhibited rapid signs of degradation associated with a significant reduction in functional characteristics.


Materials ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 533 ◽  
Author(s):  
Jan Koplík ◽  
Lukáš Kalina ◽  
Jiří Másilko ◽  
František Šoukal

2018 ◽  
Vol 761 ◽  
pp. 15-18 ◽  
Author(s):  
Jan Koplík ◽  
Tomáš Solný ◽  
Lukáš Kalina ◽  
Jiří Másilko

It is well known, that alkali-activated materials (AAMs) are suitable for immobilization of heavy metals and other hazardous materials. This study is focused on the characterization of inhibition of three metals – Sr2+, Bi3+and Zn2+in alkali-activated matrices. Two type of matrices were prepared – alkali-activated blast furnace slag (BFS) and alkali-activated fly ash (FA). Sodium water glass was used as alkaline activator. The ability of these matrices to fix the metals were proved by leaching tests. Compressive strength was measured to characterize mechanical properties of the matrices. Scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to examine distribution and chemical state of metals within the matrices. The observed metals mainly formed the insoluble compounds after alkali activation.


2018 ◽  
Vol 181 ◽  
pp. 175-184 ◽  
Author(s):  
Chaohui Wang ◽  
Penghui Wen ◽  
Menghao Wang ◽  
Qiaojuan Fan ◽  
Xinqi Wang

2019 ◽  
Vol 274 ◽  
pp. 04003
Author(s):  
Minna Sarkkinen ◽  
Kauko Kujala ◽  
Seppo Gehör

Potholes denote small, typically sharp edged holes in the pavement. The aim of this research was to study the usability of alkali activated (AA) blast furnace slag based material in the repair of paved roads, especially during the cold winter and spring seasons when such repairs are needed most and the use of hot asphalt is not possible. The objective was to a find material which is both more cost-efficient and durable than plain cold asphalt. Properties like rapid strength development, good bonding with old paving material, weather resistance, abrasion resistance, and low shrinkage were required. The influence of the chosen factors on the performance of the material was studied applying the multi-attribute optimization method. The impact of different additives, such as Portland cement, fibers and crushed tire rubber were studied. The results indicated that the AA slag based materials studied can be improved by suitable additives to make them reach desired performance. According to the tests, adding Portland cement increased compressive strength threefold after 3 hours and reduced shrinkage by 34% but should be a negative impact on higher levels related to freeze-thaw resistance. In addition, crushed rubber was indicated to have a positive impact related to all the studied performance properties.


1995 ◽  
Vol 351 (2-3) ◽  
pp. 173-180
Author(s):  
J. J. LaBrecque ◽  
D. V. de Leyt ◽  
C. Vazquez

Sign in / Sign up

Export Citation Format

Share Document