Road to Offshore Gas Production Test - from Mallik to Nankai Trough

Author(s):  
Tatsuo Saeki
2015 ◽  
Vol 66 ◽  
pp. 471-486 ◽  
Author(s):  
Jun Yoneda ◽  
Akira Masui ◽  
Yoshihiro Konno ◽  
Yusuke Jin ◽  
Kosuke Egawa ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 563-578 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Xin Xin

Summary Marine-gas-hydrate-drilling exploration at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate accumulations, which are composed of alternating beds of sand, silt, and clay in sediments, with vertically varying porosity, permeability, and hydrate saturation. The main purposes of this work are to evaluate gas productivity and identify the multiphase-flow behavior from the sedimentary-complex hydrate reservoir by depressurization through a conventional vertical well. We first established a history-matching model by incorporating the available geological data at the offshore-production test site in the Eastern Nankai Trough. The reservoir model was validated by matching the fluid-flow rates at a production well and temperature changes at a monitoring well during a field test. The modeling results indicate that the hydrate-dissociation zone is strongly affected by the reservoir heterogeneity and shows a unique dissociation front. The gas-production rate is expected to increase with time and reach the considerable value of 3.6 × 104 std m3/d as a result of the significant expansion of the dissociation zone. The numerical model, using a simplified description of porosity, permeability, and hydrate saturation, leads to significant underestimation of gas productivity from the sedimentary-complex hydrate reservoir. The results also suggest that the interbedded-hydrate-occurrence systems might be a better candidate for methane (CH4) gas extraction than the massive hydrate reservoirs.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 531-546 ◽  
Author(s):  
Jun Yoneda ◽  
Akira Takiguchi ◽  
Toshimasa Ishibashi ◽  
Aya Yasui ◽  
Jiro Mori ◽  
...  

Summary During gas production from offshore gas-HBS, there are concerns regarding the settlement of the seabed and the possibility that frictional stress will develop along the production casing. This frictional stress is caused by a change in the effective stress induced by water movement caused by depressurization and dissociation of hydrate as well as gas generation and thermal changes, all of which are interconnected. The authors have developed a multiphase-coupled simulator by use of a finite-element method named COTHMA. Stresses and deformation caused by gas-hydrate production near the production well and deep seabed were predicted using a multiphase simulator coupled with geomechanics for the offshore gas-hydrate-production test in the eastern Nankai Trough. Distributions of hydrate saturation, gas saturation, water pressure, gas pressure, temperature, and stresses were predicted by the simulator. As a result, the dissociation of gas hydrate was predicted within a range of approximately 10 m, but mechanical deformation occurred in a much wider area. The stress localization initially occurred in a sand layer with low hydrate saturation, and compression behavior appeared. Tensile stress was generated in and around the casing shoe as it was pulled vertically downward caused by compaction of the formation. As a result, the possibility of extensive failure of the gravel pack of the well completion was demonstrated. In addition, in a specific layer, where a pressure reduction progressed in the production interval, the compressive force related to frictional stress from the formation increased, and the gravel layer became thin. Settlement of the seafloor caused by depressurization for 6 days was within a few centimeters and an approximate 30 cm for 1 year of continued production.


2008 ◽  
Vol 146 (6) ◽  
pp. 705-715 ◽  
Author(s):  
R. BHATTA ◽  
O. ENISHI ◽  
N. TAKUSARI ◽  
K. HIGUCHI ◽  
I. NONAKA ◽  
...  

SUMMARYA series of studies were carried out to measure the methane (CH4) production by Japanese goats fed 19 different diets (D1–D19) varying in nutritive composition in the open circuit respiration chamber (RC) and to compare them with CH4 estimated by the in vitro gas production test (IVGPT). Adult Japanese goats (>2 years old) with a mean body weight of 26±5·4 kg were used in these experiments. Each diet was fed to four randomly selected goats and feeding was carried out at 1·1 maintenance (M) as per National Research Council (NRC) (1981) for goats. Average CH4 emission by goats in the RC ranged from 0·23 to 0·39 (mean value 31 ml/g dry matter intake (DMI)); when it was expressed as a proportion of gross energy or, with methane conversion rate (MCR), it ranged from 5·0 to 8·2, with an average of 6·6. Incorporation of by-products like sweet potato vine silage (SPVS) (P=0·016), dried pumpkin (P=0·052) and brewers' grain in the diet suppressed (P<0·01) methanogenesis in goats, when compared with that of standard farm diet (D1). The CH4 output measured in the RC was very close to that estimated from the gas collected after 24 h and higher after 48 h of in vitro incubation. Although composition of the diets' acid detergent fibre (ADF) had a significant effect on methane emission, methane output estimated by IVGPT was very close to that measured in the RC demonstrating that this system could be used to estimate the CH4 production potential from diets in preparing a database and also in the planning of mitigation strategies in small ruminants to improve their performance as well as to reduce greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document