Geophysical Methods for the Mapping of Submarine Massive Sulphide Deposits

Author(s):  
Peter Kowalczyk ◽  
Stephen Bloomer ◽  
Matthew Kowalczyk
2019 ◽  
pp. 137-154
Author(s):  
Steven R. McCutcheon ◽  
James A. Walker

The Bathurst Mining Camp of northern New Brunswick is approximately 3800 km2 in area, encompassed by a circle of radius 35 km. It is known worldwide for its volcanogenic massive sulphide deposits, especially for the Brunswick No. 12 Mine, which was in production from 1964 to 2013. The camp was born in October of 1952, with the discovery of the Brunswick No. 6 deposit, and this sparked a staking rush with more hectares claimed in the province than at any time since.   In 1952, little was known about the geology of the Bathurst Mining Camp or the depositional settings of its mineral deposits, because access was poor and the area was largely forest covered. We have learned a lot since that time. The camp was glaciated during the last ice age and various ice-flow directions are reflected on the physiographic map of the area. Despite abundant glacial deposits, we now know that the camp comprises several groups of Ordovician predominantly volcanic rocks, belonging to the Dunnage Zone, which overlie older sedimentary rocks belonging to the Gander Zone. The volcanic rocks formed during rifting of a submarine volcanic arc on the continental margin of Ganderia, ultimately leading to the formation of a Sea of Japan-style basin that is referred to as the Tetagouche-Exploits back-arc basin. The massive sulphide deposits are mostly associated with early-stage, felsic volcanic rocks and formed during the Middle Ordovician upon or near the sea floor by precipitation from metalliferous fluids escaping from submarine hot springs.   The history of mineral exploration in the Bathurst Mining Camp can be divided into six periods: a) pre-1952, b) 1952-1958, c) 1959-1973, d) 1974-1988, and e) 1989-2000, over which time 45 massive sulphide deposits were discovered. Prior to 1952, only one deposit was known, but the efforts of three men, Patrick (Paddy) W. Meahan, Dr. William J. Wright, and Dr. Graham S. MacKenzie, focused attention on the mineral potential of northern New Brunswick, which led to the discovery of the Brunswick No. 6 deposit in October 1952. In the 1950s, 29 deposits were discovered, largely resulting from the application of airborne surveys, followed by ground geophysical methods. From 1959 to 1973, six deposits were discovered, mostly satellite bodies to known deposits. From 1974 to 1988, five deposits were found, largely because of the application of new low-cost analytical and geophysical techniques. From 1989 to 2000, four more deposits were discovered; three were deep drilling targets but one was at surface. RÉSUMÉLe camp minier de Bathurst, dans le nord du Nouveau-Brunswick, s’étend sur environ 3 800 km2 à l’intérieur d’un cercle de 35 km de rayon. Il est connu dans le monde entier pour ses gisements de sulfures massifs volcanogènes, en particulier pour la mine Brunswick n° 12, exploitée de 1964 à 2013. Le camp est né en octobre 1952 avec la découverte du gisement Brunswick n° 6 et a suscité une ruée au jalonnement sans précédent avec le plus d’hectares revendiqués dans la province qu’à présent.   En 1952, on savait peu de choses sur la géologie du camp minier de Bathurst ou sur les conditions de déposition de ses gisements minéraux, car l’accès était très limité et la zone était en grande partie recouverte de forêt. Nous avons beaucoup appris depuis cette période. Le camp était recouvert de glace au cours de la dernière période glaciaire et diverses directions d’écoulements glaciaires sont révélées sur la carte physiographique de la région. Malgré des dépôts glaciaires abondants, nous savons maintenant que le camp comprend plusieurs groupes de roches ordoviciennes à prédominance volcanique, appartenant à la zone Dunnage, qui recouvrent de plus vieilles roches sédimentaires de la zone Gander. Les roches volcaniques se sont formées lors du rifting d’un arc volcanique sous-marin sur la marge continentale de Ganderia, ce qui a finalement abouti à la formation d’un bassin de type mer du Japon, appelé bassin d’arrière-arc de Tetagouche-Exploits. Les gisements de sulfures massifs sont principalement associés aux roches volcaniques felsiques de stade précoce et se sont formés au cours de l’Ordovicien moyen sur ou proche du plancher océanique par la précipitation de fluides métallifères s’échappant de sources chaudes sous-marines.   L’histoire de l’exploration minière dans le camp minier de Bathurst peut être divisée en six périodes: a) antérieure à 1952, b) 1952-1958, c) 1959-1973, d) 1974-1988 et e) 1989-2000, au cours desquelles 45 dépôts de sulfures massifs ont été découverts. Avant 1952, un seul dépôt était connu, mais les efforts de trois hommes, Patrick (Paddy) W. Meahan, William J. Wright et Graham S. MacKenzie, ont attiré l’attention sur le potentiel minier du nord du Nouveau-Brunswick, ce qui a conduit à la découverte du gisement Brunswick n° 6 au mois d’octobre 1952. Dans les années 50, 29 gisements ont été découverts, résultant en grande partie de l’utilisation de levés aéroportés, suivis de campagnes géophysiques terrestres. De 1959 à 1973, six gisements ont été découverts. Ce sont essentiellement des formations satellites de gisements connus. De 1974 à 1988, cinq gisements ont été découverts, principalement grâce à l’utilisation de nouvelles techniques analytiques et géophysiques peu coûteuses. De 1989 à 2000, quatre autres gisements ont été découverts. Trois étaient des cibles de forage profondes, mais l’un était à la surface.


2009 ◽  
Vol 46 (7) ◽  
pp. 481-508 ◽  
Author(s):  
Y. M. DeWolfe ◽  
H. L. Gibson ◽  
B. Lafrance ◽  
A. H. Bailes

The hanging wall to the Flin Flon, Callinan, and Triple 7 volcanogenic massive sulphide deposits of the Flin Flon district is composed of the Hidden and Louis formations. The contact between these formations is marked by mafic tuff that represents a hiatus in effusive volcanism. The formations form a composite volcanic edifice that was erupted and grew within a large, volcanic–tectonic subsidence structure (hosting the deposits) that developed within a rifted-arc environment. The formations are evidence of resurgent effusive volcanism and subsidence following a hiatus in volcanism marked by ore formation since they consist of dominantly basaltic flows, sills, and volcaniclastic rocks with subordinate basaltic andesite and rhyodacitic flows and volcaniclastic rocks. The Hidden formation is interpreted to represent a small shield volcano and the Louis formation a separate shield volcano that developed on its flank. Both the Hidden and Louis volcanic edifices were constructed by continuous, low-volume eruptions of pillow lava. A gradual change from a dominantly extensional environment during the formation of the footwall Flin Flon formation to a progressively more dominant convergent environment during the emplacement of the hanging wall suggests that the Hidden and Louis formations are unlikely to host significant volcanogenic massive sulphide-type mineralization. However, synvolcanic structures in the formations define structural corridors that project downwards into the footwall where they encompass massive sulphide mineralization, indicating their control on ore formation, longevity,and reactivation as magma and fluid pathways during the growth of the Hidden and Louis volcanoes.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 156 ◽  
Author(s):  
Abderrahim Essaifi ◽  
Kathryn Goodenough ◽  
Fernando Tornos ◽  
Abdelhak Outigua ◽  
Abdelmalek Ouadjou ◽  
...  

This work provides an overview of the geological, geochemical, and metallogenic data available up to date on the Moroccan massive sulphide deposits, including some new results, and then discusses the evidences for the epigenetic and syngenetic hypotheses. All of the ore deposits are located within a crustal block located at the intersection between two major shear zones and are characterized by a sustained and long-lived magmatic activity. The ore deposits are located within second-order shear zones, which played an important role in controlling the geometry of the mineralization. The mineralization lacks the unequivocal textural and structural features that are indicative of a sedimentary or diagenetic origin, and a syntectonic to late-tectonic pyrite-rich assemblage is superimposed on an earlier, pretectonic to syntectonic pyrrhotite-rich mineralization. Each deposit has a distinctive pyrrhotite sulfur isotopic signature, while the sulfur isotopic signature of pyrite is similar in all deposits. Lead isotopes suggest a shift from a magmatic source during the pyrrhotite-rich mineralization to a source that is inherited from the host shales during the pyrite-rich mineralization. The O/H isotopic signatures record a predominance of fluids of metamorphic derivation. These results are consistent with a model in which an earlier pyrrhotite-rich mineralization, which formed during transtension, was deformed and then remobilized to pyrite-rich mineralization during transpression.


Sign in / Sign up

Export Citation Format

Share Document